Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions

  1. Anna Plana-Bonamaisó
  2. Santiago López-Begines
  3. David Fernández-Justel
  4. Alexandra Junza
  5. Ariadna Soler-Tapia
  6. Jordi Andilla
  7. Pablo Loza-Alvarez
  8. Jose Luis Rosa
  9. Esther Miralles
  10. Isidre Casals
  11. Oscar Yanes
  12. Pedro de la Villa
  13. Ruben M Buey
  14. Ana Méndez  Is a corresponding author
  1. University of Barcelona, Spain
  2. University of Salamanca, Spain
  3. CIBERDEM, Spain
  4. ICFO-Institut de Ciencies Fotoniques, Spain
  5. Universitat de Barcelona, Spain
  6. University of Alcalá de Henares, School of Medicine, Spain
  7. Universidad de Salamanca, Spain

Abstract

We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr159/Ser160 in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Anna Plana-Bonamaisó

    Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Santiago López-Begines

    Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8809-8919
  3. David Fernández-Justel

    Metabolic Engineering Group. Department of Microbiology and Genetics., University of Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5728-2756
  4. Alexandra Junza

    CIBERDEM, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Ariadna Soler-Tapia

    Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Jordi Andilla

    The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Pablo Loza-Alvarez

    The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Jose Luis Rosa

    Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Esther Miralles

    Centros Científicos y Tecnológicos de la UB, CCiT-UB, Universitat de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Isidre Casals

    Centros Científicos y Tecnológicos de la UB, CCiT-UB, Universitat de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Oscar Yanes

    CIBERDEM, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Pedro de la Villa

    Department of System Biology, University of Alcalá de Henares, School of Medicine, Alcalá de Henares, Spain
    Competing interests
    The authors declare that no competing interests exist.
  13. Ruben M Buey

    Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1263-0221
  14. Ana Méndez

    Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
    For correspondence
    mendezzu@idibell.cat
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6393-1644

Funding

Ministerio de Economía y Competitividad (BFU2016-80583-R)

  • Ana Méndez

Laser Lab Europe (654148)

  • Pablo Loza-Alvarez

Fundación Ramón Areces (XVII Edition Rare Diseases)

  • Ana Méndez

Fundacio La Marató (20141730)

  • Jordi Andilla
  • Pablo Loza-Alvarez
  • Ana Méndez

Ministerio de Economía y Competitividad (BFU2016-79237-P)

  • Ruben M Buey

Instituto de Salud Carlos III (PI18/00754)

  • Pedro de la Villa

Junta de Castilla y León (Graduate student fellowship)

  • David Fernández-Justel

Ministerio de Economía y Competitividad (SEV-2015-0522)

  • Pablo Loza-Alvarez

Centres de Recerca de Catalunya (CERCA Institutional Support)

  • Pablo Loza-Alvarez
  • Ana Méndez

Fundació Privada Cellex (ICFO Institutional Support)

  • Pablo Loza-Alvarez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Pertaining to animal research, this study was conducted in accordance with the ARVO statement for the use of animals in ophthalmic and vision research and in compliance with acts 5/1995 and 214/1997 for the welfare of experimental animals of the autonomous community (Generalitat) of Catalonia; and approved by the ethics committee on animal experiments of the University of Barcelona (Generalitat Reference #9906, protocols Bell 216/17; 217/17 and 218/17).

Copyright

© 2020, Plana-Bonamaisó et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,011
    views
  • 397
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Plana-Bonamaisó
  2. Santiago López-Begines
  3. David Fernández-Justel
  4. Alexandra Junza
  5. Ariadna Soler-Tapia
  6. Jordi Andilla
  7. Pablo Loza-Alvarez
  8. Jose Luis Rosa
  9. Esther Miralles
  10. Isidre Casals
  11. Oscar Yanes
  12. Pedro de la Villa
  13. Ruben M Buey
  14. Ana Méndez
(2020)
Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions
eLife 9:e56418.
https://doi.org/10.7554/eLife.56418

Share this article

https://doi.org/10.7554/eLife.56418

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.