EEG-based detection of the locus of auditory attention with convolutional neural networks
Abstract
In a multi-speaker scenario, the human auditory system is able to attend to one particular speaker of interest and ignore the others. It has been demonstrated that it is possible to use electroencephalography (EEG) signals to infer to which speaker someone is attending by relating the neural activity to the speech signals. However, classifying auditory attention within a short time interval remains the main challenge. We present a convolutional neural network-based approach to extract the locus of auditory attention (left/right) without knowledge of the speech envelopes. Our results show that it is possible to decode the locus of attention within 1 to 2 s, with a median accuracy of around 81%. These results are promising for neuro-steered noise suppression in hearing aids, in particular in scenarios where per-speaker envelopes are unavailable.
Data availability
Code used for training and evaluating the network has been made available at https://github.com/exporl/locus-of-auditory-attention-cnn. The CNN models used to generate the results shown in the paper are also available at that location. The dataset used in this study had been made available earlier at https://zenodo.org/record/3377911.
-
Auditory Attention Detection Dataset KULeuvenhttp://doi.org/10.5281/zenodo.3377911.
Article and author information
Author details
Funding
KU Leuven Special Research Fund (C14/16/057)
- Tom Francart
KU Leuven Special Research Fund (C24/18/099)
- Alexander Bertrand
Research Foundation Flanders (1.5.123.16N)
- Alexander Bertrand
Research Foundation Flanders (G0A4918N)
- Alexander Bertrand
European Research Council (637424)
- Tom Francart
European Research Council (802895)
- Alexander Bertrand
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The experiment was approved by the Ethics Committee Research UZ/KU Leuven (S57102) and every participant signed an informed consent form approved by the same commitee.
Copyright
© 2021, Vandecappelle et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 547
- downloads
-
- 79
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.
-
- Neuroscience
Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.