Universality of clonal dynamics poses fundamental limits to identify stem cell self-renewal strategies

  1. Cristina Parigini
  2. Philip Greulich  Is a corresponding author
  1. University of Southampton, United Kingdom


How adult stem cells maintain self-renewing tissues is in vivo commonly assessed by analysing clonal data from cell lineage tracing assays. To identify strategies of stem cell self-renewal requires that different models of stem cell fate choice predict sufficiently different clonal statistics. Here we show that models of cell fate choice can, in homeostatic tissues, be categorized by exactly two 'universality classes', whereby models of the same class predict, under asymptotic conditions, the same clonal statistics. Those classes relate to generalizations of the canonical asymmetric vs. symmetric stem cell self-renewal strategies and are distinguished by a conservation law. This poses both challenges and opportunities to identify stem cell self-renewal strategies: while under asymptotic conditions, self-renewal models of the same universality class cannot be distinguished by clonal data only, models of different classes can be distinguished by simple means.

Data availability

All numerical data used for figures is produced by programme code, which can be found on Github, under https://github.com/cp4u17/simCellState

The following data sets were generated

Article and author information

Author details

  1. Cristina Parigini

    Mathematical Sciences, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Philip Greulich

    Mathematical Sciences, University of Southampton, Southampton, United Kingdom
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5247-6738


Medical Research Council (MR/R026610/1)

  • Philip Greulich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Publication history

  1. Received: March 2, 2020
  2. Accepted: July 3, 2020
  3. Accepted Manuscript published: July 20, 2020 (version 1)
  4. Version of Record published: August 24, 2020 (version 2)


© 2020, Parigini & Greulich

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 704
    Page views
  • 130
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cristina Parigini
  2. Philip Greulich
Universality of clonal dynamics poses fundamental limits to identify stem cell self-renewal strategies
eLife 9:e56532.

Further reading

    1. Computational and Systems Biology
    2. Stem Cells and Regenerative Medicine
    Genki N Kanda et al.
    Research Article

    Induced differentiation is one of the most experience- and skill-dependent experimental processes in regenerative medicine, and establishing optimal conditions often takes years. We developed a robotic AI system with a batch Bayesian optimization algorithm that autonomously induces the differentiation of induced pluripotent stem cell-derived retinal pigment epithelial (iPSC-RPE) cells. From 200 million possible parameter combinations, the system performed cell culture in 143 different conditions in 111 days, resulting in 88% better iPSC-RPE production than that obtained by the pre-optimized culture in terms of the pigmentation scores. Our work demonstrates that the use of autonomous robotic AI systems drastically accelerates systematic and unbiased exploration of experimental search space, suggesting immense use in medicine and research.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jayashree Kumar et al.
    Research Article Updated

    Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.