Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice

Abstract

Mechanisms regulating the turnover of synaptic vesicle (SV) proteins are not well understood. They are thought to require poly-ubiquitination and degradation through proteasome, endo-lysosomal or autophagy-related pathways. Bassoon was shown to negatively regulate presynaptic autophagy in part by scaffolding Atg5. Here, we show that increased autophagy in Bassoon knockout neurons depends on poly-ubiquitination and that the loss of Bassoon leads to elevated levels of ubiquitinated synaptic proteins per se. Our data show that Bassoon knockout neurons have a smaller SV pool size and a higher turnover rate as indicated by a younger pool of SV2. The E3 ligase Parkin is required for increased autophagy in Bassoon-deficient neurons as the knockdown of Parkin normalized autophagy and SV protein levels and rescued impaired SV recycling. These data indicate that Bassoon is a key regulator of SV proteostasis and that Parkin is a key E3 ligase in the autophagy-mediated clearance of SV proteins.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Sheila Hoffmann-Conaway

    German Center for Neurodegenerative Diseases, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Marisa M Brockmann

    Institut für Neurophysiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1386-5359
  3. Katharina Schneider

    German Center for Neurodegenerative Diseases, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anil Annamneedi

    Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Kazi Atikur Rahman

    German Center for Neurodegenerative Diseases, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8124-6026
  6. Christine Bruns

    German Center for Neurodegenerative Diseases, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kathrin Textoris-Taube

    Institute of Biochemistry, Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thorsten Trimbuch

    Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Karl-Heinz Smalla

    Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Christian Rosenmund

    Institut für Neurophysiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3905-2444
  11. Eckart D Gundelfinger

    Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Craig Curtis Garner

    German Center for Neurodegenerative Diseases, Berlin, Germany
    For correspondence
    craig.garner@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1970-5417
  13. Carolina Montenegro-Venegas

    Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
    For correspondence
    cmontene@lin-magdeburg.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Federal Government of Germany (SFB958)

  • Craig Curtis Garner

Federal Government of Germany (SFB779/B09)

  • Eckart D Gundelfinger

BMBF (20150065)

  • Eckart D Gundelfinger

BMBF (20150065)

  • Karl-Heinz Smalla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Breeding of animals and experiments using animal material were carried out in accordance with the European Communities Council Directive (2010/63/EU) and approved by the local animal care committees of Sachsen-Anhalt or the animal welfare committee of Charité Medical University and the Berlin state government (protocol number: T0036/14, O0208/16).

Copyright

© 2020, Hoffmann-Conaway et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 441
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sheila Hoffmann-Conaway
  2. Marisa M Brockmann
  3. Katharina Schneider
  4. Anil Annamneedi
  5. Kazi Atikur Rahman
  6. Christine Bruns
  7. Kathrin Textoris-Taube
  8. Thorsten Trimbuch
  9. Karl-Heinz Smalla
  10. Christian Rosenmund
  11. Eckart D Gundelfinger
  12. Craig Curtis Garner
  13. Carolina Montenegro-Venegas
(2020)
Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice
eLife 9:e56590.
https://doi.org/10.7554/eLife.56590

Share this article

https://doi.org/10.7554/eLife.56590

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.