Recurrent processes support a cascade of hierarchical decisions
Abstract
Perception depends on a complex interplay between feedforward and recurrent processing. Yet, while the former has been extensively characterized, the computational organization of the latter remains largely unknown. Here, we use magneto-encephalography to localize, track and decode the feedforward and recurrent processes of reading, as elicited by letters and digits whose level of ambiguity was parametrically manipulated. We first confirm that a feedforward response propagates through the ventral and dorsal pathways within the first 200 ms. The subsequent activity is distributed across temporal, parietal and prefrontal cortices, which sequentially generate five levels of representations culminating in action-specific motor signals. Our decoding analyses reveal that both the content and the timing of these brain responses are best explained by a hierarchy of recurrent neural assemblies, which both maintain and broadcast increasingly rich representations. Together, these results show how recurrent processes generate, over extended time periods, a cascade of decisions that ultimately accounts for subjects' perceptual reports and reaction times.
Data availability
Anonymised source data for figures have been uploaded to Dryad: https://datadryad.org/stash/share/Brtqvoy74YhoHxvaBZMsCeL5JOvWdI_Yuaui5fyIJPA
-
Data from: Recurrent processes support a cascade of hierarchical decisionsDryad Digital Repository, doi:10.5061/dryad.70rxwdbtr.
Article and author information
Author details
Funding
William Orr Dingwall Dissertation Fellowship (Dissertation Fellowship)
- Laura Gwilliams
Abu Dhabi Institute Grant (G1001)
- Laura Gwilliams
Horizon 2020 Framework Programme (660086)
- Jean-Remi King
Bettencourt-Schueller Foundation (Bettencourt-Schueller Foundation)
- Jean-Remi King
Fondation Roger de Spoelberch (Fondation Roger de Spoelberch)
- Jean-Remi King
Philippe Foundation (Philippe Foundation)
- Jean-Remi King
National Institutes of Health (R01DC05660)
- Laura Gwilliams
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was ethically approved by the comité de protection des personnes (CPP) IDF 7 under the reference CPP 08 021. All subjects gave written informed consent to participate in this study, which was approved by the local Ethics Committee, in accordance with the Declaration of Helsinki. Participants were compensated for their participation.
Copyright
© 2020, Gwilliams & King
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,994
- views
-
- 373
- downloads
-
- 31
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.
-
- Neuroscience
Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.