Recurrent processes support a cascade of hierarchical decisions

  1. Laura Gwilliams  Is a corresponding author
  2. Jean-Remi King
  1. New York University, United States
  2. École normale supérieure, PSL University, CNRS, France

Abstract

Perception depends on a complex interplay between feedforward and recurrent processing. Yet, while the former has been extensively characterized, the computational organization of the latter remains largely unknown. Here, we use magneto-encephalography to localize, track and decode the feedforward and recurrent processes of reading, as elicited by letters and digits whose level of ambiguity was parametrically manipulated. We first confirm that a feedforward response propagates through the ventral and dorsal pathways within the first 200 ms. The subsequent activity is distributed across temporal, parietal and prefrontal cortices, which sequentially generate five levels of representations culminating in action-specific motor signals. Our decoding analyses reveal that both the content and the timing of these brain responses are best explained by a hierarchy of recurrent neural assemblies, which both maintain and broadcast increasingly rich representations. Together, these results show how recurrent processes generate, over extended time periods, a cascade of decisions that ultimately accounts for subjects' perceptual reports and reaction times.

Data availability

Anonymised source data for figures have been uploaded to Dryad: https://datadryad.org/stash/share/Brtqvoy74YhoHxvaBZMsCeL5JOvWdI_Yuaui5fyIJPA

The following data sets were generated

Article and author information

Author details

  1. Laura Gwilliams

    Psychology, New York University, New York, United States
    For correspondence
    leg5@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9213-588X
  2. Jean-Remi King

    Departement d'Etudes Cognitives, École normale supérieure, PSL University, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2121-170X

Funding

William Orr Dingwall Dissertation Fellowship (Dissertation Fellowship)

  • Laura Gwilliams

Abu Dhabi Institute Grant (G1001)

  • Laura Gwilliams

Horizon 2020 Framework Programme (660086)

  • Jean-Remi King

Bettencourt-Schueller Foundation (Bettencourt-Schueller Foundation)

  • Jean-Remi King

Fondation Roger de Spoelberch (Fondation Roger de Spoelberch)

  • Jean-Remi King

Philippe Foundation (Philippe Foundation)

  • Jean-Remi King

National Institutes of Health (R01DC05660)

  • Laura Gwilliams

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas Serre, Brown University, United States

Ethics

Human subjects: This study was ethically approved by the comité de protection des personnes (CPP) IDF 7 under the reference CPP 08 021. All subjects gave written informed consent to participate in this study, which was approved by the local Ethics Committee, in accordance with the Declaration of Helsinki. Participants were compensated for their participation.

Version history

  1. Received: March 3, 2020
  2. Accepted: August 30, 2020
  3. Accepted Manuscript published: September 1, 2020 (version 1)
  4. Version of Record published: September 18, 2020 (version 2)

Copyright

© 2020, Gwilliams & King

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,758
    views
  • 344
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Gwilliams
  2. Jean-Remi King
(2020)
Recurrent processes support a cascade of hierarchical decisions
eLife 9:e56603.
https://doi.org/10.7554/eLife.56603

Share this article

https://doi.org/10.7554/eLife.56603

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.