Recurrent processes support a cascade of hierarchical decisions
Abstract
Perception depends on a complex interplay between feedforward and recurrent processing. Yet, while the former has been extensively characterized, the computational organization of the latter remains largely unknown. Here, we use magneto-encephalography to localize, track and decode the feedforward and recurrent processes of reading, as elicited by letters and digits whose level of ambiguity was parametrically manipulated. We first confirm that a feedforward response propagates through the ventral and dorsal pathways within the first 200 ms. The subsequent activity is distributed across temporal, parietal and prefrontal cortices, which sequentially generate five levels of representations culminating in action-specific motor signals. Our decoding analyses reveal that both the content and the timing of these brain responses are best explained by a hierarchy of recurrent neural assemblies, which both maintain and broadcast increasingly rich representations. Together, these results show how recurrent processes generate, over extended time periods, a cascade of decisions that ultimately accounts for subjects' perceptual reports and reaction times.
Data availability
Anonymised source data for figures have been uploaded to Dryad: https://datadryad.org/stash/share/Brtqvoy74YhoHxvaBZMsCeL5JOvWdI_Yuaui5fyIJPA
-
Data from: Recurrent processes support a cascade of hierarchical decisionsDryad Digital Repository, doi:10.5061/dryad.70rxwdbtr.
Article and author information
Author details
Funding
William Orr Dingwall Dissertation Fellowship (Dissertation Fellowship)
- Laura Gwilliams
Abu Dhabi Institute Grant (G1001)
- Laura Gwilliams
Horizon 2020 Framework Programme (660086)
- Jean-Remi King
Bettencourt-Schueller Foundation (Bettencourt-Schueller Foundation)
- Jean-Remi King
Fondation Roger de Spoelberch (Fondation Roger de Spoelberch)
- Jean-Remi King
Philippe Foundation (Philippe Foundation)
- Jean-Remi King
National Institutes of Health (R01DC05660)
- Laura Gwilliams
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was ethically approved by the comité de protection des personnes (CPP) IDF 7 under the reference CPP 08 021. All subjects gave written informed consent to participate in this study, which was approved by the local Ethics Committee, in accordance with the Declaration of Helsinki. Participants were compensated for their participation.
Reviewing Editor
- Thomas Serre, Brown University, United States
Publication history
- Received: March 3, 2020
- Accepted: August 30, 2020
- Accepted Manuscript published: September 1, 2020 (version 1)
- Version of Record published: September 18, 2020 (version 2)
Copyright
© 2020, Gwilliams & King
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,412
- Page views
-
- 305
- Downloads
-
- 14
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Inhibition is crucial for brain function, regulating network activity by balancing excitation and implementing gain control. Recent evidence suggests that beyond simply inhibiting excitatory activity, inhibitory neurons can also shape circuit function through disinhibition. While disinhibitory circuit motifs have been implicated in cognitive processes including learning, attentional selection, and input gating, the role of disinhibition is largely unexplored in the study of decision-making. Here, we show that disinhibition provides a simple circuit motif for fast, dynamic control of network state and function. This dynamic control allows a disinhibition-based decision model to reproduce both value normalization and winner-take-all dynamics, the two central features of neurobiological decision-making captured in separate existing models with distinct circuit motifs. In addition, the disinhibition model exhibits flexible attractor dynamics consistent with different forms of persistent activity seen in working memory. Fitting the model to empirical data shows it captures well both the neurophysiological dynamics of value coding and psychometric choice behavior. Furthermore, the biological basis of disinhibition provides a simple mechanism for flexible top-down control of the network states, enabling the circuit to capture diverse task-dependent neural dynamics. These results suggest a biologically plausible unifying mechanism for decision-making and emphasize the importance of local disinhibition in neural processing.
-
- Medicine
- Neuroscience
The available treatments for depression have substantial limitations, including low response rates and substantial lag time before a response is achieved. We applied deep brain stimulation (DBS) to the lateral habenula (LHb) of two rat models of depression (Wistar Kyoto rats and lipopolysaccharide-treated rats) and observed an immediate (within seconds to minutes) alleviation of depressive-like symptoms with a high-response rate. Simultaneous functional MRI (fMRI) conducted on the same sets of depressive rats used in behavioral tests revealed DBS-induced activation of multiple regions in afferent and efferent circuitry of the LHb. The activation levels of brain regions connected to the medial LHb (M-LHb) were correlated with the extent of behavioral improvements. Rats with more medial stimulation sites in the LHb exhibited greater antidepressant effects than those with more lateral stimulation sites. These results indicated that the antidromic activation of the limbic system and orthodromic activation of the monoaminergic systems connected to the M-LHb played a critical role in the rapid antidepressant effects of LHb-DBS. This study indicates that M-LHb-DBS might act as a valuable, rapid-acting antidepressant therapeutic strategy for treatment-resistant depression and demonstrates the potential of using fMRI activation of specific brain regions as biomarkers to predict and evaluate antidepressant efficacy.