Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders

Abstract

AKT is implicated in neurological disorders. AKT has three isoforms, AKT1/AKT2/AKT3, with brain cell type-specific expression that may differentially influence behavior. Therefore, we examined single Akt isoform, conditional brain-specific Akt1, and double Akt1/3 mutant mice in behaviors relevant to neuropsychiatric disorders. Because sex is a determinant of these disorders but poorly understood, sex was an experimental variable in our design. Our studies revealed AKT isoform- and sex-specific effects on anxiety, spatial and contextual memory, and fear extinction. In Akt1 mutant males, viral-mediated AKT1 restoration in the prefrontal cortex rescued extinction phenotypes. We identified a novel role for AKT2 and overlapping roles for AKT1 and AKT3 in long-term memory. Finally, we found that sex-specific behavior effects were not mediated by AKT expression or activation differences between sexes. These results highlight sex as a biological variable and isoform- or cell type-specific AKT signaling as potential targets for improving treatment of neuropsychiatric disorders.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-9.

Article and author information

Author details

  1. Helen Wong

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    For correspondence
    hw460@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Josien Levenga

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9971-6337
  3. Lauren E LaPlante

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bailey N Keller

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew Cooper-Sansone

    Integrative Physiology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Curtis Borski

    Integrative Physiology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ryan A Milstead

    Department of Integrative Physiology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3333-853X
  8. Marissa Ehringer

    Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Charles A Hoeffer

    Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, Boulder, United States
    For correspondence
    charles.hoeffer@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2036-0201

Funding

National Institute of Neurological Disorders and Stroke (NS086933)

  • Helen Wong
  • Josien Levenga
  • Lauren E LaPlante
  • Bailey N Keller
  • Andrew Cooper-Sansone
  • Curtis Borski
  • Ryan A Milstead
  • Charles A Hoeffer

National Institute of Mental Health (MH016880)

  • Helen Wong
  • Charles A Hoeffer

Jerome LeJeune Foundation (1805)

  • Helen Wong
  • Andrew Cooper-Sansone
  • Charles A Hoeffer

National Institute on Aging (AG 064465)

  • Helen Wong
  • Lauren E LaPlante
  • Charles A Hoeffer

National Institute on Aging (AG052371)

  • Ryan A Milstead

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mary Kay Lobo, University of Maryland, United States

Version history

  1. Received: March 4, 2020
  2. Accepted: December 15, 2020
  3. Accepted Manuscript published: December 16, 2020 (version 1)
  4. Version of Record published: January 6, 2021 (version 2)

Copyright

© 2020, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,849
    views
  • 332
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen Wong
  2. Josien Levenga
  3. Lauren E LaPlante
  4. Bailey N Keller
  5. Andrew Cooper-Sansone
  6. Curtis Borski
  7. Ryan A Milstead
  8. Marissa Ehringer
  9. Charles A Hoeffer
(2020)
Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders
eLife 9:e56630.
https://doi.org/10.7554/eLife.56630

Share this article

https://doi.org/10.7554/eLife.56630

Further reading

    1. Neuroscience
    Olivier Codol, Jonathan A Michaels ... Paul L Gribble
    Tools and Resources

    Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly application programming interface, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on PyTorch and therefore can implement any network architecture that is possible using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation.

    1. Neuroscience
    Meike E van der Heijden, Amanda M Brown ... Roy V Sillitoe
    Research Article

    The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.