Abstract

PKD2 (polycystin-2, TRPP1), a TRP polycystin channel, is expressed in endothelial cells (ECs), but its physiological functions in this cell type are unclear. Here, we generated inducible, EC-specific Pkd2 knockout mice to examine vascular functions of PKD2. Data show that a broad range of intravascular flow rates stimulate EC PKD2 channels, producing vasodilation. Flow-mediated PKD2 channel activation leads to calcium influx that activates SK/IK channels and eNOS serine 1176 phosphorylation in ECs. These signaling mechanisms produce arterial hyperpolarization and vasodilation. In contrast, EC PKD2 channels do not contribute to acetylcholine-induced vasodilation, suggesting stimulus-specific function. EC-specific PKD2 knockout elevated blood pressure in mice without altering cardiac function or kidney anatomy. These data demonstrate that flow stimulates PKD2 channels in ECs, leading to SK/IK channel and eNOS activation, hyperpolarization, vasodilation and a reduction in systemic blood pressure. Thus, PKD2 channels are a major component of functional flow sensing in the vasculature.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Charles E MacKay

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. M Dennis Leo

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Fernández-Peña

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0726-3204
  4. Raquibul Hasan

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wen Yin

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alejandro Mata-Daboin

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Simon Bulley

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5985-0489
  8. Jesse Gammons

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Salvatore Mancarella

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan H Jaggar

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    For correspondence
    jjaggar@uthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1505-3335

Funding

National Institutes of Health (HL133256)

  • Jonathan H Jaggar

National Institutes of Health (HL137745)

  • Jonathan H Jaggar

American Heart Association (16SDG27460007)

  • Simon Bulley

American Heart Association (15SDG22680019)

  • M Dennis Leo

American Heart Association (20POST35210200)

  • Charles E MacKay

American Heart Association (16POST30960010)

  • Raquibul Hasan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Animal Care and Use Committee of the University of Tennessee (protocol 17-068.0).

Copyright

© 2020, MacKay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,079
    views
  • 356
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles E MacKay
  2. M Dennis Leo
  3. Carlos Fernández-Peña
  4. Raquibul Hasan
  5. Wen Yin
  6. Alejandro Mata-Daboin
  7. Simon Bulley
  8. Jesse Gammons
  9. Salvatore Mancarella
  10. Jonathan H Jaggar
(2020)
Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure
eLife 9:e56655.
https://doi.org/10.7554/eLife.56655

Share this article

https://doi.org/10.7554/eLife.56655

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.