1. Immunology and Inflammation
  2. Microbiology and Infectious Disease
Download icon

SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst

  1. Giang T Nguyen
  2. Lamyaa Shaban
  3. Matthias Mack
  4. Kenneth D Swanson
  5. Stephen C Bunnell
  6. David B Sykes
  7. Joan Mecsas  Is a corresponding author
  1. Tufts Graduate School of Biomedical Sciences, United States
  2. University Hospital Regensburg, Germany
  3. Beth Israel Deaconess Medical Center, United States
  4. Tufts University School of Medicine, United States
  5. Massachusetts General Hospital, United States
Research Article
  • Cited 5
  • Views 1,235
  • Annotations
Cite this article as: eLife 2020;9:e56656 doi: 10.7554/eLife.56656

Abstract

Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCg2, and PKCs. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Giang T Nguyen

    Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8967-3396
  2. Lamyaa Shaban

    Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthias Mack

    Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Kenneth D Swanson

    Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen C Bunnell

    Department of Immunology, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6887-0828
  6. David B Sykes

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joan Mecsas

    Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
    For correspondence
    joan.mecsas@tufts.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9455-6672

Funding

National Institutes of Health (R01 AI113166)

  • Joan Mecsas

National Institutes of Health (4T32AI007422)

  • Lamyaa Shaban

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures followed NIH guidelines. All mice were handled in accordance with protocols (B2018-10) approved by the Institutional Animal Care and Use Committee (IACUC) of Tufts University.

Reviewing Editor

  1. Christina L Stallings, Washington University School of Medicine, United States

Publication history

  1. Received: March 5, 2020
  2. Accepted: April 29, 2020
  3. Accepted Manuscript published: April 30, 2020 (version 1)
  4. Version of Record published: May 26, 2020 (version 2)

Copyright

© 2020, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,235
    Page views
  • 182
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    Rafael Bayarri-Olmos et al.
    Research Article Updated

    The alpha/B.1.1.7 SARS-CoV-2 lineage emerged in autumn 2020 in the United Kingdom and transmitted rapidly until winter 2021 when it was responsible for most new COVID-19 cases in many European countries. The incidence domination was likely due to a fitness advantage that could be driven by the receptor-binding domain (RBD) residue change (N501Y), which also emerged independently in other variants of concern such as the beta/B.1.351 and gamma/P.1 strains. Here, we present a functional characterization of the alpha/B.1.1.7 variant and show an eightfold affinity increase towards human angiotensin-converting enzyme-2 (ACE-2). In accordance with this, transgenic hACE2 mice showed a faster disease progression and severity after infection with a low dose of B.1.1.7, compared to an early 2020 SARS-CoV-2 isolate. When challenged with sera from convalescent individuals or anti-RBD monoclonal antibodies, the N501Y variant showed a minor, but significant elevated evasion potential of ACE-2/RBD antibody neutralization. The data suggest that the single asparagine to tyrosine substitution remarkable rise in affinity may be responsible for the higher transmission rate and severity of the B.1.1.7 variant.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Koshlan Mayer-Blackwell et al.
    Research Article

    T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes – groups of biochemically similar TCRs – that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.