SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst

  1. Giang T Nguyen
  2. Lamyaa Shaban
  3. Matthias Mack
  4. Kenneth D Swanson
  5. Stephen C Bunnell
  6. David B Sykes
  7. Joan Mecsas  Is a corresponding author
  1. Tufts Graduate School of Biomedical Sciences, United States
  2. University Hospital Regensburg, Germany
  3. Beth Israel Deaconess Medical Center, United States
  4. Tufts University School of Medicine, United States
  5. Massachusetts General Hospital, United States

Abstract

Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCg2, and PKCs. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Giang T Nguyen

    Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8967-3396
  2. Lamyaa Shaban

    Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthias Mack

    Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Kenneth D Swanson

    Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen C Bunnell

    Department of Immunology, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6887-0828
  6. David B Sykes

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joan Mecsas

    Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
    For correspondence
    joan.mecsas@tufts.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9455-6672

Funding

National Institutes of Health (R01 AI113166)

  • Joan Mecsas

National Institutes of Health (4T32AI007422)

  • Lamyaa Shaban

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures followed NIH guidelines. All mice were handled in accordance with protocols (B2018-10) approved by the Institutional Animal Care and Use Committee (IACUC) of Tufts University.

Copyright

© 2020, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,071
    views
  • 286
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giang T Nguyen
  2. Lamyaa Shaban
  3. Matthias Mack
  4. Kenneth D Swanson
  5. Stephen C Bunnell
  6. David B Sykes
  7. Joan Mecsas
(2020)
SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst
eLife 9:e56656.
https://doi.org/10.7554/eLife.56656

Share this article

https://doi.org/10.7554/eLife.56656

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.