Cadherins regulate nuclear topography and function of developing ocular motor circuitry

  1. Athene Knüfer
  2. Giovanni Diana
  3. Gregory S Walsh
  4. Jonathan DW Clarke  Is a corresponding author
  5. Sarah Guthrie  Is a corresponding author
  1. King's College London, United Kingdom
  2. Virginia Commonwealth University, United States
  3. University of Sussex, United Kingdom

Abstract

In the vertebrate central nervous system, groups of functionally-related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.

Data availability

The data that support the findings in this study are available within the article and supporting files.

Article and author information

Author details

  1. Athene Knüfer

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Giovanni Diana

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7497-5271
  3. Gregory S Walsh

    Department of Biology, Virginia Commonwealth University, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan DW Clarke

    Department of Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    jon.clarke@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Guthrie

    Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
    For correspondence
    S.Guthrie@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8446-9150

Funding

Biotechnology and Biological Sciences Research Council (BB/J014567/1)

  • Athene Knüfer

Company of Biologists (DEV-170218)

  • Athene Knüfer

Wellcome Trust (102895/Z/13/Z)

  • Jonathan DW Clarke

Medical Research Council (MR/L020742/2)

  • Sarah Guthrie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: This work was approved by the local Animal Care and Use Committee (King's College London) and was carried out in accordance with the Animals (Experimental Procedures) Act, 1986, under licence from the United Kingdom Home Office (PPLs: 70/7753 and P70880F4C-Z001, PIL: I1D87502D).

Version history

  1. Received: March 7, 2020
  2. Accepted: September 30, 2020
  3. Accepted Manuscript published: October 1, 2020 (version 1)
  4. Version of Record published: October 30, 2020 (version 2)

Copyright

© 2020, Knüfer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,501
    Page views
  • 140
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Athene Knüfer
  2. Giovanni Diana
  3. Gregory S Walsh
  4. Jonathan DW Clarke
  5. Sarah Guthrie
(2020)
Cadherins regulate nuclear topography and function of developing ocular motor circuitry
eLife 9:e56725.
https://doi.org/10.7554/eLife.56725

Share this article

https://doi.org/10.7554/eLife.56725

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.