Cadherins regulate nuclear topography and function of developing ocular motor circuitry

  1. Athene Knüfer
  2. Giovanni Diana
  3. Gregory S Walsh
  4. Jonathan DW Clarke  Is a corresponding author
  5. Sarah Guthrie  Is a corresponding author
  1. King's College London, United Kingdom
  2. Virginia Commonwealth University, United States
  3. University of Sussex, United Kingdom

Abstract

In the vertebrate central nervous system, groups of functionally-related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.

Data availability

The data that support the findings in this study are available within the article and supporting files.

Article and author information

Author details

  1. Athene Knüfer

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Giovanni Diana

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7497-5271
  3. Gregory S Walsh

    Department of Biology, Virginia Commonwealth University, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan DW Clarke

    Department of Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    jon.clarke@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Guthrie

    Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
    For correspondence
    S.Guthrie@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8446-9150

Funding

Biotechnology and Biological Sciences Research Council (BB/J014567/1)

  • Athene Knüfer

Company of Biologists (DEV-170218)

  • Athene Knüfer

Wellcome Trust (102895/Z/13/Z)

  • Jonathan DW Clarke

Medical Research Council (MR/L020742/2)

  • Sarah Guthrie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This work was approved by the local Animal Care and Use Committee (King's College London) and was carried out in accordance with the Animals (Experimental Procedures) Act, 1986, under licence from the United Kingdom Home Office (PPLs: 70/7753 and P70880F4C-Z001, PIL: I1D87502D).

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: March 7, 2020
  2. Accepted: September 30, 2020
  3. Accepted Manuscript published: October 1, 2020 (version 1)
  4. Version of Record published: October 30, 2020 (version 2)

Copyright

© 2020, Knüfer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,340
    Page views
  • 124
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Athene Knüfer
  2. Giovanni Diana
  3. Gregory S Walsh
  4. Jonathan DW Clarke
  5. Sarah Guthrie
(2020)
Cadherins regulate nuclear topography and function of developing ocular motor circuitry
eLife 9:e56725.
https://doi.org/10.7554/eLife.56725

Further reading

    1. Developmental Biology
    Qiyan Mao et al.
    Research Article Updated

    Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. More efficient myofiber bundling accelerates the speed of sarcomerogenesis suggesting that tension generated by bundling promotes sarcomerogenesis. We tested this hypothesis by directly probing tension and found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Marta Perera et al.
    Research Article

    During embryonic development cells acquire identity at the same time as they are proliferating, implying that an intrinsic facet of cell fate choice requires coupling lineage decisions to rates of cell division. How is the cell cycle regulated to promote or suppress heterogeneity and differentiation? We explore this question combining time lapse imaging with single cell RNA-seq in the contexts of self-renewal, priming and differentiation of mouse embryonic stem cells (ESCs) towards the Primitive Endoderm lineage (PrE). Since ESCs are derived from the Inner Cell Mass of the mammalian blastocyst, ESCs in standard culture conditions are transcriptionally heterogeneous containing subfractions that are primed for either of the two ICM lineages, Epiblast and PrE. These subfractions represent dynamic states that can readily interconvert in culture, and the PrE subfraction is functionally primed for endoderm differentiation. Here we find that differential regulation of cell cycle can tip the balance between these primed populations, such that naïve ESC culture conditions promote Epiblast-like expansion and PrE differentiation stimulates the selective survival and proliferation of PrE-primed cells. In endoderm differentiation, we find that this change is accompanied by a counter-intuitive increase in G1 length that also appears replicated in vivo. While FGF/ERK signalling is a known key regulator of ESCs and PrE differentiation, we find it is not just responsible for ESCs heterogeneity, but also cell cycle synchronisation, required for the inheritance of similar cell cycles between sisters and cousins. Taken together, our results point to a tight relationship between transcriptional heterogeneity and cell cycle regulation in the context of lineage priming, with primed cell populations providing a pool of flexible cell types that can be expanded in a lineage-specific fashion while allowing plasticity during early determination.