Drosophila TRPg is required in neuroendocrine cells for post-ingestive food selection

  1. Subash Dhakal
  2. Qiuting Ren
  3. Jiangqu Liu
  4. Bradley Akitake
  5. Izel Tekin
  6. Craig Montell  Is a corresponding author
  7. Youngseok Lee  Is a corresponding author
  1. Kookmin University, Republic of Korea
  2. Johns Hopkins University School of Medicine, United States
  3. University of California, Santa Barbara, United States

Abstract

The mechanism through which the brain senses the metabolic state, enabling an animal to regulate food consumption, and discriminate between nutritional and non-nutritional foods is a fundamental question. Flies choose the sweeter non-nutritive sugar, L-glucose, over the nutritive D-glucose if they are not starved. However, under starvation conditions, they switch their preference to D-glucose, and this occurs independent of peripheral taste neurons. Here, we found that eliminating the TRPγ channel impairs the ability of starved flies to choose D-glucose. This food selection depends on trpγ expression in neurosecretory cells in the brain that express Diuretic hormone 44 (DH44). Loss of trpγ increases feeding, alters the physiology of the crop, which is the fly stomach equivalent, and decreases intracellular sugars and glycogen levels. Moreover, survival of starved trpγ flies is reduced. Expression of trpγ in DH44 neurons reverses these deficits. These results highlight roles for TRPγ in coordinating feeding with the metabolic state through expression in DH44 neuroendocrine cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-7, and Figure supplements 1-7.

Article and author information

Author details

  1. Subash Dhakal

    Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiuting Ren

    Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiangqu Liu

    Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bradley Akitake

    Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Izel Tekin

    Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Craig Montell

    Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    cmontell@ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5637-1482
  7. Youngseok Lee

    Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
    For correspondence
    iven1125@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Deafness and Other Communication Disorders (DC007864)

  • Craig Montell

National Institute of Allergy and Infectious Diseases (AI65575)

  • Craig Montell

National Institute of Allergy and Infectious Diseases (AI169386)

  • Craig Montell

National Research Foundation of Korea (NRF-2018R1A2B6004202)

  • Youngseok Lee

National Research Foundation of Korea (NRF-2016R1D1A1B03931273)

  • Youngseok Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Dhakal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,307
    views
  • 330
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Subash Dhakal
  2. Qiuting Ren
  3. Jiangqu Liu
  4. Bradley Akitake
  5. Izel Tekin
  6. Craig Montell
  7. Youngseok Lee
(2022)
Drosophila TRPg is required in neuroendocrine cells for post-ingestive food selection
eLife 11:e56726.
https://doi.org/10.7554/eLife.56726

Share this article

https://doi.org/10.7554/eLife.56726

Further reading

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.