Drosophila TRPg is required in neuroendocrine cells for post-ingestive food selection
Abstract
The mechanism through which the brain senses the metabolic state, enabling an animal to regulate food consumption, and discriminate between nutritional and non-nutritional foods is a fundamental question. Flies choose the sweeter non-nutritive sugar, L-glucose, over the nutritive D-glucose if they are not starved. However, under starvation conditions, they switch their preference to D-glucose, and this occurs independent of peripheral taste neurons. Here, we found that eliminating the TRPγ channel impairs the ability of starved flies to choose D-glucose. This food selection depends on trpγ expression in neurosecretory cells in the brain that express Diuretic hormone 44 (DH44). Loss of trpγ increases feeding, alters the physiology of the crop, which is the fly stomach equivalent, and decreases intracellular sugars and glycogen levels. Moreover, survival of starved trpγ flies is reduced. Expression of trpγ in DH44 neurons reverses these deficits. These results highlight roles for TRPγ in coordinating feeding with the metabolic state through expression in DH44 neuroendocrine cells.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-7, and Figure supplements 1-7.
Article and author information
Author details
Funding
National Institute on Deafness and Other Communication Disorders (DC007864)
- Craig Montell
National Institute of Allergy and Infectious Diseases (AI65575)
- Craig Montell
National Institute of Allergy and Infectious Diseases (AI169386)
- Craig Montell
National Research Foundation of Korea (NRF-2018R1A2B6004202)
- Youngseok Lee
National Research Foundation of Korea (NRF-2016R1D1A1B03931273)
- Youngseok Lee
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Dhakal et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,207
- views
-
- 330
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Neuroscience
Two major ligand-receptor signaling axes – endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret – are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates. Both Cre lines result in Hirschsprung disease when combined with conditional Ednrb or conditional Ret alleles. In vitro explant assays and analysis of lineage-labeled mutant embryos show that GDNF but not Edn3 is a migration cue for cells of both lineages. Instead, Edn3-Ednrb function is required in both for GDNF responsiveness albeit in different ways: by expanding the Ret+ population in the Pax2Cre lineage, and by supporting Ret function in Wnt1Cre-derived cells. Our results demonstrate that two distinct lineages of progenitors give rise to the ENS, and that these divergently utilize endothelin signaling to support migration to the hindgut.
-
- Neuroscience
Memory consolidation in Drosophila can be sleep-dependent or sleep-independent, depending on the availability of food. The anterior posterior (ap) alpha′/beta′ (α′/β′) neurons of the mushroom body (MB) are required for sleep-dependent memory consolidation in flies fed after training. These neurons are also involved in the increase of sleep after training, suggesting a coupling of sleep and memory. To better understand the mechanisms underlying sleep and memory consolidation initiation, we analyzed the transcriptome of ap α′/β′ neurons 1 hr after appetitive memory conditioning. A small number of genes, enriched in RNA processing functions, were differentially expressed in flies fed after training relative to trained and starved flies or untrained flies. Knockdown of each of these differentially expressed genes in the ap α′/β′ neurons revealed notable sleep phenotypes for Polr1F and Regnase-1, both of which decrease in expression after conditioning. Knockdown of Polr1F, a regulator of ribosome RNA transcription, in adult flies promotes sleep and increases pre-ribosome RNA expression as well as overall translation, supporting a function for Polr1F downregulation in sleep-dependent memory. Conversely, while constitutive knockdown of Regnase-1, an mRNA decay protein localized to the ribosome, reduces sleep, adult specific knockdown suggests that effects of Regnase-1 on sleep are developmental in nature. We further tested the role of each gene in memory consolidation. Knockdown of Polr1F does not affect memory, which may be expected from its downregulation during memory consolidation. Regnase-1 knockdown in ap α′/β′ neurons impairs all memory, including short-term, implicating Regnase-1 in memory, but leaving open the question of why it is downregulated during sleep-dependent memory. Overall, our findings demonstrate that the expression of RNA processing genes is modulated during sleep-dependent memory and, in the case of Polr1F, this modulation likely contributes to increased sleep.