TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis

  1. Maorong Chen
  2. Nathalia Amado
  3. Jieqiong Tan
  4. Alice Reis
  5. Mengxu Ge
  6. Jose Garcia Abreu
  7. Xi He  Is a corresponding author
  1. F M Kirby Center, Boston Children's Hospital, Harvard Medical School, United States
  2. Universidade Federal do Rio de Janeiro, Brazil

Abstract

Wnt signaling through the Frizzled (FZD) family of serpentine receptors is essential for embryogenesis and homeostasis, and stringent control of the FZD protein level is critical for stem cell regulation. Through CRISPR/Cas9 genome-wide screening in human cells, we identified TMEM79/MATTRIN, an orphan multi-span transmembrane protein, as a specific inhibitor of Wnt/FZD signaling. TMEM79 interacts with FZD during biogenesis and promotes FZD degradation independent of ZNRF3/RNF43 ubiquitin ligases (R-spondin receptors). TMEM79 interacts with ubiquitin-specific protease 8 (USP8), whose activating mutations underlie human tumorigenesis. TMEM79 specifically inhibits USP8 deubiquitination of FZD, thereby governing USP8 substrate specificity and promoting FZD degradation. Tmem79 and Usp8 genes have a pre-bilaterian origin, and Tmem79 inhibition of Usp8 and Wnt signaling is required for anterior neural development and gastrulation in Xenopus embryos. TMEM79 is a predisposition gene for Atopic dermatitis, suggesting deregulation of Wnt/FZD signaling a possible cause for this most common yet enigmatic inflammatory skin disease.

Data availability

All datasets associated with this article are available. Source data were uploaded. Raw data for Xenopus are in the Supplementary file 1.

The following data sets were generated

Article and author information

Author details

  1. Maorong Chen

    Neurology, F M Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    Maorong Chen, M.C and X.H. through Boston Children's Hospital have filed a patent application on atopic dermatitis therapeutics Patent# WO2020069344A1..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3744-8864
  2. Nathalia Amado

    Neurology, F M Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Jieqiong Tan

    Neurology, F M Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Alice Reis

    Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
    Competing interests
    No competing interests declared.
  5. Mengxu Ge

    Neurology, F M Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Jose Garcia Abreu

    Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
    Competing interests
    No competing interests declared.
  7. Xi He

    Neurology, F M Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    For correspondence
    Xi.He@childrens.harvard.edu
    Competing interests
    Xi He, M.C and X.H. through Boston Children's Hospital have filed a patent application on atopic dermatitis therapeutics Patent# WO2020069344A1. X.H. is a scientific advisory board member of Leap Therapeutics, a cancer therapeutics company..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8093-7981

Funding

National Institutes of Health (R01GM126120)

  • Xi He

Boston Children's Hospital (Boston Children's Hospital (BCH) Pilot and Translational Research Program (TRP) grants)

  • Xi He

Boston Children's Hospital (BCH Intellectual and Developmental Disabilities Research Center (P30 HD-18655))

  • Xi He

Harvard Medical School (Goldenson fellowship)

  • Nathalia Amado

Chinese Scholarship Council and Central South University (visiting scholarship)

  • Jieqiong Tan

CNPq and Rio de Janeiro State Foundation for Science support

  • Jose Garcia Abreu

American Cancer Society

  • Xi He

National Institute of General Medical Sciences (R35GM134953)

  • Xi He

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roel Nusse, Stanford University, United States

Ethics

Animal experimentation: All Xenopus experiments were approved by Boston Children's Hospital (BCH) Institutional Animal Care and Use Committee (IACUC) and performed under protocol 18-09-3780R.

Version history

  1. Received: March 10, 2020
  2. Accepted: September 11, 2020
  3. Accepted Manuscript published: September 14, 2020 (version 1)
  4. Version of Record published: September 28, 2020 (version 2)

Copyright

© 2020, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,089
    views
  • 310
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maorong Chen
  2. Nathalia Amado
  3. Jieqiong Tan
  4. Alice Reis
  5. Mengxu Ge
  6. Jose Garcia Abreu
  7. Xi He
(2020)
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis
eLife 9:e56793.
https://doi.org/10.7554/eLife.56793

Share this article

https://doi.org/10.7554/eLife.56793

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.