1. Developmental Biology
  2. Evolutionary Biology
Download icon

Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer

  1. Iryna Kozmikova  Is a corresponding author
  2. Zbynek Kozmik
  1. Institute of Molecular Genetics of the ASCR, Czech Republic
Research Article
  • Cited 2
  • Views 2,027
  • Annotations
Cite this article as: eLife 2020;9:e56817 doi: 10.7554/eLife.56817

Abstract

Deciphering the mechanisms of axis formation in amphioxus is a key step to understanding the evolution of chordate body plan. The current view is that Nodal signaling is the only factor promoting the dorsal axis specification in the amphioxus whereas Wnt/β-catenin signaling plays no role in this process. Here, we re-examined the role of Wnt/βcatenin signaling in the dorsal/ventral patterning of amphioxus embryo. We demonstrated that the spatial activity of Wnt/β-catenin signaling is located in presumptive dorsal cells from cleavage to gastrula stage, and provided functional evidence that Wnt/β-catenin signaling is necessary for the specification of dorsal cell fate in a stage-dependent manner. Microinjection of Wnt8 and Wnt11 mRNA induced ectopic dorsal axis in neurulae and larvae. Finally, we demonstrated that Nodal and Wnt/β-catenin signaling cooperate to promote the dorsal-specific gene expression in amphioxus gastrula. Our study reveals high evolutionary conservation of dorsal organizer formation in the chordate lineage.

Article and author information

Author details

  1. Iryna Kozmikova

    Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
    For correspondence
    kozmikova@img.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7861-9802
  2. Zbynek Kozmik

    Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.

Funding

Grantová Agentura České Republiky (GACR 15-21285J)

  • Iryna Kozmikova

Grantová Agentura České Republiky (GACR 17-15374S)

  • Zbynek Kozmik

Ministerstvo Školství, Mládeže a Tělovýchovy (ERDF,project No. CZ.02.1.01/0.0/0.0/16_013/0001775)

  • Iryna Kozmikova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roel Nusse, Stanford University, United States

Publication history

  1. Received: March 10, 2020
  2. Accepted: May 25, 2020
  3. Accepted Manuscript published: May 26, 2020 (version 1)
  4. Accepted Manuscript updated: May 27, 2020 (version 2)
  5. Version of Record published: June 12, 2020 (version 3)

Copyright

© 2020, Kozmikova & Kozmik

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,027
    Page views
  • 331
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Graham Rykiel et al.
    Tools and Resources

    Cardiac pumping depends on the morphological structure of the heart, but also on its sub-cellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.

    1. Developmental Biology
    Christian SM Helker et al.
    Research Article Updated

    To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.