True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field

Abstract

Color, an important visual cue for survival, is encoded by comparing signals from photoreceptors with different spectral sensitivities. The mouse retina expresses a short wavelength-sensitive and a middle/long wavelength-sensitive opsin (S- and M-opsin), forming opposing, overlapping gradients along the dorsal-ventral axis. Here, we analyzed the distribution of all cone types across the entire retina for two commonly used mouse strains. We found, unexpectedly, that 'true S-cones' (S-opsin only) are highly concentrated (up to 30% of cones) in ventral retina. Moreover, S-cone bipolar cells (SCBCs) are also skewed towards ventral retina, with wiring patterns matching the distribution of true S-cones. In addition, true S-cones in the ventral retina form clusters, which may augment synaptic input to SCBCs. Such a unique true S-cone and SCBC connecting pattern forms a basis for mouse color vision, likely reflecting evolutionary adaption to enhance color coding for the upper visual field suitable for mice's habitat and behavior.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Francisco M Nadal-Nicolás

    Retinal Neurophysiology Section, National Eye Institute (NIH), Bethesda, United States
    For correspondence
    nadalnicolasfm@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4121-514X
  2. Vincent P Kunze

    Retinal Neurophysiology Section, National Eye Institute (NIH), Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7869-9793
  3. John M Ball

    Retinal Neurophysiology Section, National Eye Institute (NIH), Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brian T Peng

    Retinal Neurophysiology Section, National Eye Institute (NIH), Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Akshay Krishnan

    Retinal Neurophysiology Section, National Eye Institute (NIH), Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gaohui Zhou

    Retinal Neurophysiology Section, National Eye Institute (NIH), Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lijin Dong

    Genetic Engineering Facility, National Eye Institute (NIH), Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wei Li

    Retinal Neurophysiology Section, National Eye Institute (NIH), Bethesda, United States
    For correspondence
    liwei2@nei.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2897-649X

Funding

National Eye Institute (Intramural Research Program)

  • Wei Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Fred Rieke, University of Washington, United States

Ethics

Animal experimentation: All experiments and animal care are conducted in accordance with protocols approved by the Animal Care and Use Committee of the National Institutes of Health and following the Association for Research in Vision and Ophthalmology guidelines for the use of animals in research. The protocol was approved by the Animal Care and Use Committee of the National Institutes of Health (ASP#606).

Version history

  1. Received: March 12, 2020
  2. Accepted: May 28, 2020
  3. Accepted Manuscript published: May 28, 2020 (version 1)
  4. Version of Record published: June 22, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,160
    views
  • 644
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francisco M Nadal-Nicolás
  2. Vincent P Kunze
  3. John M Ball
  4. Brian T Peng
  5. Akshay Krishnan
  6. Gaohui Zhou
  7. Lijin Dong
  8. Wei Li
(2020)
True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field
eLife 9:e56840.
https://doi.org/10.7554/eLife.56840

Share this article

https://doi.org/10.7554/eLife.56840

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Evolutionary Biology
    Robert Horvath, Nikolaos Minadakis ... Anne C Roulin
    Research Article

    Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.