Abstract

A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically distinct cell populations, and determines whether these populations stratify patient survival. With a pilot mass cytometry dataset of 2 million cells from 28 glioblastomas, RAPID identified tumor cells whose abundance independently and continuously stratified patient survival. Statistical validation within the workflow included repeated runs of stochastic steps and cell subsampling. Biological validation used an orthogonal platform, immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings from the pilot cohort. RAPID was also validated to find known risk-stratifying cells and features using published data from blood cancer. Thus, RAPID provides an automated, unsupervised approach for finding statistically and biologically significant cells using cytometry data from patient samples.

Data availability

Annotated flow data files are available at the following link: https://flowrepository.org/id/FR-FCM-Z24K. Patient specific views of population abundance and channel mass signals for all analyzed patients in this study are currently available in Supplementary File 6. RAPID code is currently available on Github, together with example analysis data: https://github.com/cytolab/RAPID

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nalin Leelatian

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  2. Justine Sinnaeve

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9303-7969
  3. Akshitkumar M Mistry

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7918-5153
  4. Sierra M Barone

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5944-750X
  5. Asa A Brockman

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  6. Kirsten E Diggins

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Allison R Greenplate

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  8. Kyle D Weaver

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  9. Reid C Thompson

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  10. Lola B Chambless

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  11. Bret C Mobley

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  12. Rebecca A Ihrie

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    rebecca.ihrie@vanderbilt.edu
    Competing interests
    No competing interests declared.
  13. Jonathan M Irish

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    jonathan.irish@vanderbilt.edu
    Competing interests
    Jonathan M Irish, was a co-founder and a board member of Cytobank Inc. and received research support from Incyte Corp, Janssen, and Pharmacyclics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9428-8866

Funding

National Institutes of Health (R00 CA143231)

  • Jonathan M Irish

National Institutes of Health (F31 CA199993)

  • Allison R Greenplate

National Institutes of Health (R25 CA136440-04)

  • Kirsten E Diggins

Vanderbilt Ingram Cancer Center (Provocative Question)

  • Jonathan M Irish

National Institutes of Health (R01 CA226833)

  • Jonathan M Irish

National Institutes of Health (U54 CA217450)

  • Jonathan M Irish

National Institutes of Health (U01 AI125056)

  • Sierra M Barone
  • Jonathan M Irish

National Institutes of Health (R01 NS096238)

  • Rebecca A Ihrie

U.S. Department of Defense (W81XWH-16-1-0171)

  • Rebecca A Ihrie

Michael David Greene Brain Cancer Fund

  • Rebecca A Ihrie
  • Jonathan M Irish

Vanderbilt Institute for Clinical and Translational Research (VR51342)

  • Bret C Mobley
  • Rebecca A Ihrie

Vanderbilt Ingram Cancer Center (P30 CA68485)

  • Jonathan M Irish

Vanderbilt Ingram Cancer Center (Ambassadors Award)

  • Rebecca A Ihrie
  • Jonathan M Irish

Southeastern Brain Tumor Foundation

  • Rebecca A Ihrie
  • Jonathan M Irish

Vanderbilt University (International Scholars Program)

  • Nalin Leelatian

Vanderbilt University (Discovery Grant)

  • Nalin Leelatian
  • Jonathan M Irish

Alpha Omega Alpha Honor Medical Society (Postgraduate Award)

  • Akshitkumar M Mistry

Society of Neurological Surgeons (RUNN Award)

  • Akshitkumar M Mistry

National Institutes of Health (F32 CA224962-01)

  • Akshitkumar M Mistry

Burroughs Wellcome Fund (1018894)

  • Akshitkumar M Mistry

National Institutes of Health (T32 HD007502)

  • Justine Sinnaeve

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. C Daniela Robles-Espinoza, International Laboratory for Human Genome Research, Mexico

Version history

  1. Received: March 12, 2020
  2. Accepted: June 4, 2020
  3. Accepted Manuscript published: June 23, 2020 (version 1)
  4. Version of Record published: July 7, 2020 (version 2)

Copyright

© 2020, Leelatian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,490
    Page views
  • 438
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nalin Leelatian
  2. Justine Sinnaeve
  3. Akshitkumar M Mistry
  4. Sierra M Barone
  5. Asa A Brockman
  6. Kirsten E Diggins
  7. Allison R Greenplate
  8. Kyle D Weaver
  9. Reid C Thompson
  10. Lola B Chambless
  11. Bret C Mobley
  12. Rebecca A Ihrie
  13. Jonathan M Irish
(2020)
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
eLife 9:e56879.
https://doi.org/10.7554/eLife.56879

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    David J Torres, Paulus Mrass ... Judy L Cannon
    Research Article Updated

    T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.

    1. Computational and Systems Biology
    Ricardo Omar Ramirez Flores, Jan David Lanzer ... Julio Saez-Rodriguez
    Research Article

    Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.