Abstract

A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically distinct cell populations, and determines whether these populations stratify patient survival. With a pilot mass cytometry dataset of 2 million cells from 28 glioblastomas, RAPID identified tumor cells whose abundance independently and continuously stratified patient survival. Statistical validation within the workflow included repeated runs of stochastic steps and cell subsampling. Biological validation used an orthogonal platform, immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings from the pilot cohort. RAPID was also validated to find known risk-stratifying cells and features using published data from blood cancer. Thus, RAPID provides an automated, unsupervised approach for finding statistically and biologically significant cells using cytometry data from patient samples.

Data availability

Annotated flow data files are available at the following link: https://flowrepository.org/id/FR-FCM-Z24K. Patient specific views of population abundance and channel mass signals for all analyzed patients in this study are currently available in Supplementary File 6. RAPID code is currently available on Github, together with example analysis data: https://github.com/cytolab/RAPID

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nalin Leelatian

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  2. Justine Sinnaeve

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9303-7969
  3. Akshitkumar M Mistry

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7918-5153
  4. Sierra M Barone

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5944-750X
  5. Asa A Brockman

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  6. Kirsten E Diggins

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Allison R Greenplate

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  8. Kyle D Weaver

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  9. Reid C Thompson

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  10. Lola B Chambless

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  11. Bret C Mobley

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  12. Rebecca A Ihrie

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    rebecca.ihrie@vanderbilt.edu
    Competing interests
    No competing interests declared.
  13. Jonathan M Irish

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    jonathan.irish@vanderbilt.edu
    Competing interests
    Jonathan M Irish, was a co-founder and a board member of Cytobank Inc. and received research support from Incyte Corp, Janssen, and Pharmacyclics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9428-8866

Funding

National Institutes of Health (R00 CA143231)

  • Jonathan M Irish

National Institutes of Health (F31 CA199993)

  • Allison R Greenplate

National Institutes of Health (R25 CA136440-04)

  • Kirsten E Diggins

Vanderbilt Ingram Cancer Center (Provocative Question)

  • Jonathan M Irish

National Institutes of Health (R01 CA226833)

  • Jonathan M Irish

National Institutes of Health (U54 CA217450)

  • Jonathan M Irish

National Institutes of Health (U01 AI125056)

  • Sierra M Barone
  • Jonathan M Irish

National Institutes of Health (R01 NS096238)

  • Rebecca A Ihrie

U.S. Department of Defense (W81XWH-16-1-0171)

  • Rebecca A Ihrie

Michael David Greene Brain Cancer Fund

  • Rebecca A Ihrie
  • Jonathan M Irish

Vanderbilt Institute for Clinical and Translational Research (VR51342)

  • Bret C Mobley
  • Rebecca A Ihrie

Vanderbilt Ingram Cancer Center (P30 CA68485)

  • Jonathan M Irish

Vanderbilt Ingram Cancer Center (Ambassadors Award)

  • Rebecca A Ihrie
  • Jonathan M Irish

Southeastern Brain Tumor Foundation

  • Rebecca A Ihrie
  • Jonathan M Irish

Vanderbilt University (International Scholars Program)

  • Nalin Leelatian

Vanderbilt University (Discovery Grant)

  • Nalin Leelatian
  • Jonathan M Irish

Alpha Omega Alpha Honor Medical Society (Postgraduate Award)

  • Akshitkumar M Mistry

Society of Neurological Surgeons (RUNN Award)

  • Akshitkumar M Mistry

National Institutes of Health (F32 CA224962-01)

  • Akshitkumar M Mistry

Burroughs Wellcome Fund (1018894)

  • Akshitkumar M Mistry

National Institutes of Health (T32 HD007502)

  • Justine Sinnaeve

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Leelatian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,719
    views
  • 454
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nalin Leelatian
  2. Justine Sinnaeve
  3. Akshitkumar M Mistry
  4. Sierra M Barone
  5. Asa A Brockman
  6. Kirsten E Diggins
  7. Allison R Greenplate
  8. Kyle D Weaver
  9. Reid C Thompson
  10. Lola B Chambless
  11. Bret C Mobley
  12. Rebecca A Ihrie
  13. Jonathan M Irish
(2020)
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
eLife 9:e56879.
https://doi.org/10.7554/eLife.56879

Share this article

https://doi.org/10.7554/eLife.56879

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article Updated

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.