1. Developmental Biology
  2. Immunology and Inflammation
Download icon

Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution

  1. Racquel Domingo-Gonzalez
  2. Fabio Zanini
  3. Xibing Che
  4. Min Liu
  5. Robert C Jones
  6. Michael A Swift
  7. Stephen R Quake  Is a corresponding author
  8. David N Cornfield  Is a corresponding author
  9. Cristina M Alvira  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Stanford University, United States
  3. Chan Zuckerberg Biohub, United States
Research Article
  • Cited 5
  • Views 2,702
  • Annotations
Cite this article as: eLife 2020;9:e56890 doi: 10.7554/eLife.56890

Abstract

At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.

Data availability

Sequencing data have been deposited in GEO under accession code GSE147668. Gene count and metadata tables are also available on FigShare at https://figshare.com/articles/Diverse_homeostatic_and_immunomodulatory _roles_of_immune_cells_in_the_developing_mouse_lung_revealed_at_single_cell_resolution/12043365

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Racquel Domingo-Gonzalez

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabio Zanini

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7097-8539
  3. Xibing Che

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Min Liu

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert C Jones

    Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7235-9854
  6. Michael A Swift

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen R Quake

    Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    steve@quake-lab.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1613-0809
  8. David N Cornfield

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    cornfield@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Cristina M Alvira

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    calvira@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6921-0001

Funding

National Institutes of Health (HL122918)

  • Cristina M Alvira

National Institutes of Health (HD092316)

  • David N Cornfield
  • Cristina M Alvira

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#19087) of Stanford University School of Medicine.

Reviewing Editor

  1. Emma L Rawlins, University of Cambridge, United Kingdom

Publication history

  1. Received: March 13, 2020
  2. Accepted: May 13, 2020
  3. Accepted Manuscript published: June 2, 2020 (version 1)
  4. Version of Record published: July 13, 2020 (version 2)

Copyright

© 2020, Domingo-Gonzalez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,702
    Page views
  • 394
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Tom Dierschke et al.
    Research Article

    Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular Chlorophyte alga Chlamydomonas KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.

    1. Developmental Biology
    2. Neuroscience
    Lukas Klimmasch et al.
    Research Article Updated

    The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.