Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution

  1. Racquel Domingo-Gonzalez
  2. Fabio Zanini
  3. Xibing Che
  4. Min Liu
  5. Robert C Jones
  6. Michael A Swift
  7. Stephen R Quake  Is a corresponding author
  8. David N Cornfield  Is a corresponding author
  9. Cristina M Alvira  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Stanford University, United States
  3. Chan Zuckerberg Biohub, United States

Abstract

At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.

Data availability

Sequencing data have been deposited in GEO under accession code GSE147668. Gene count and metadata tables are also available on FigShare at https://figshare.com/articles/Diverse_homeostatic_and_immunomodulatory _roles_of_immune_cells_in_the_developing_mouse_lung_revealed_at_single_cell_resolution/12043365

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Racquel Domingo-Gonzalez

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabio Zanini

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7097-8539
  3. Xibing Che

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Min Liu

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert C Jones

    Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7235-9854
  6. Michael A Swift

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen R Quake

    Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    steve@quake-lab.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1613-0809
  8. David N Cornfield

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    cornfield@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Cristina M Alvira

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    calvira@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6921-0001

Funding

National Institutes of Health (HL122918)

  • Cristina M Alvira

National Institutes of Health (HD092316)

  • David N Cornfield
  • Cristina M Alvira

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Emma L Rawlins, University of Cambridge, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#19087) of Stanford University School of Medicine.

Version history

  1. Received: March 13, 2020
  2. Accepted: May 13, 2020
  3. Accepted Manuscript published: June 2, 2020 (version 1)
  4. Version of Record published: July 13, 2020 (version 2)

Copyright

© 2020, Domingo-Gonzalez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,345
    Page views
  • 770
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Racquel Domingo-Gonzalez
  2. Fabio Zanini
  3. Xibing Che
  4. Min Liu
  5. Robert C Jones
  6. Michael A Swift
  7. Stephen R Quake
  8. David N Cornfield
  9. Cristina M Alvira
(2020)
Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution
eLife 9:e56890.
https://doi.org/10.7554/eLife.56890

Share this article

https://doi.org/10.7554/eLife.56890

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.