Empathic pain evoked by sensory and emotional-communicative cues share common and process-specific neural representation
Abstract
Pain empathy can be evoked by multiple cues, particularly observation of acute pain inflictions or facial expressions of pain. Previous studies suggest that these cues commonly activate the insula and anterior cingulate, yet vicarious pain encompass pain-specific responses as well as unspecific processes (e.g., arousal) and overlapping activations are not sufficient to determine process-specific shared neural representations. We employed multivariate pattern analyses to fMRI data acquired during observation of noxious stimulation of body limbs (NS) and painful facial expressions (FE) and found spatially and functionally similar cross-modality (NS versus FE) whole-brain vicarious pain-predictive patterns. Further analyses consistently identified shared neural representations in the bilateral mid-insula. The vicarious pain patterns were not sensitive to respond to non-painful high-arousal negative stimuli but predicted self-experienced thermal pain. Finally, a domain-general vicarious pain pattern predictive of self-experienced pain but not arousal was developed. Our findings demonstrate shared pain-associated neural representations of vicarious pain.
Data availability
The functional MRI, numerical data as well as the Matlab scripts used to generate the figures have been deposited on the figshare repository under accession code 11994498 (https://figshare.com/articles/Vicarious_pain_dataset/11994498)Statistical and pattern weight maps are available on the Neurovault repository under collection 6332 (https://neurovault.org/collections/6332/). Statistical and pattern weight images are available on Neurovault
-
Vicarious pain datasetFigshare, Vicarious_pain_dataset/11994498.
Article and author information
Author details
Funding
National Natural Science Foundation of China (91632117)
- Benjamin Becker
National Natural Science Foundation of China (31700998)
- Keith M Kendrick
National Natural Science Foundation of China (31530032)
- Shuxia Yao
National Institute of Mental Health (R01 MH116026)
- Tor D Wager
National Institute of Biomedical Imaging and Bioengineering (R01EB026549)
- Tor D Wager
National Key Research and Development Program of China (2018YFA0701400)
- Benjamin Becker
Fundamental Research Funds for Central Universities (ZYGX2015Z002)
- Benjamin Becker
Science, Innovation and Technology Department of the Sichuan Province (2018JY0001)
- Benjamin Becker
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants provided written informed consent for study participation and consent to publish the data. The study and all procedures were approved by the local ethics committee at the University of Electronic Science and Technology of China (Approval ID: 298) and was in accordance with the most recent revision of the Declaration of Helsinki.
Copyright
© 2020, Zhou et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,963
- views
-
- 495
- downloads
-
- 93
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.
-
- Neuroscience
What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.