Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes

  1. William J Watterson  Is a corresponding author
  2. Melikhan Tanyeri
  3. Andrea R Watson
  4. Candace M Cham
  5. Yue Shan
  6. Eugene B Chang
  7. A Murat Eren  Is a corresponding author
  8. Savas Tay  Is a corresponding author
  1. University of Chicago, United States
  2. Duquesne University, United States

Abstract

Traditional cultivation approaches in microbiology are labor-intensive, low-throughput, and yield biased sampling of environmental microbes due to ecological and evolutionary factors. New strategies are needed for ample representation of rare taxa and slow-growers that are often outcompeted by fast-growers in cultivation experiments. Here we describe a microfluidic platform that anaerobically isolates and cultivates microbial cells in millions of picoliter droplets and automatically sorts them based on colony density to enhance slow-growing organisms. We applied our strategy to a fecal microbiota transplant (FMT) donor stool using multiple growth media, and found significant increase in taxonomic richness and larger representation of rare and clinically relevant taxa among droplet-grown cells compared to conventional plates. Furthermore, screening the FMT donor stool for antibiotic resistance revealed 21 populations that evaded detection in plate-based assessment of antibiotic resistance. Our method improves cultivation-based surveys of diverse microbiomes to gain deeper insights into microbial functioning and lifestyles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. William J Watterson

    Pritzker School of Molecular Engineering, University of Chicago, Chicago, United States
    For correspondence
    william.j.watterson@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5065-9634
  2. Melikhan Tanyeri

    Department of Engineering, Duquesne University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  3. Andrea R Watson

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0128-6795
  4. Candace M Cham

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Yue Shan

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Eugene B Chang

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  7. A Murat Eren

    Medicine, University of Chicago, Chicago, United States
    For correspondence
    meren@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9013-4827
  8. Savas Tay

    Institute of Molecular Engineering, University of Chicago, Chicago, United States
    For correspondence
    tays@uchicago.edu
    Competing interests
    Savas Tay, Savas Tay is a founder and equity holder of BiomeSense Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1912-6020

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK42086)

  • Eugene B Chang

National Institute of Diabetes and Digestive and Kidney Diseases (RC2 DK122394-01)

  • Eugene B Chang

Samuel and Emma Winters Foundation (2018-2019)

  • Melikhan Tanyeri

GI Research Foundation of Chicago

  • William J Watterson

James & Katie Mutchnik

  • A Murat Eren

National Institute of Diabetes and Digestive and Kidney Diseases (T32 DK07074)

  • William J Watterson

Duchossois Family Institute at the University of Chicago

  • Savas Tay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Vaughn S Cooper, University of Pittsburgh, United States

Version history

  1. Received: March 17, 2020
  2. Accepted: June 14, 2020
  3. Accepted Manuscript published: June 17, 2020 (version 1)
  4. Version of Record published: July 10, 2020 (version 2)

Copyright

© 2020, Watterson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,900
    views
  • 1,098
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William J Watterson
  2. Melikhan Tanyeri
  3. Andrea R Watson
  4. Candace M Cham
  5. Yue Shan
  6. Eugene B Chang
  7. A Murat Eren
  8. Savas Tay
(2020)
Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes
eLife 9:e56998.
https://doi.org/10.7554/eLife.56998

Share this article

https://doi.org/10.7554/eLife.56998

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.