Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations

  1. Zhifang Ye
  2. Liang Shi
  3. Anqi Li
  4. Chuansheng Chen
  5. Gui Xue  Is a corresponding author
  1. Beijing Normal University, China
  2. University of California, Irvine, United States

Abstract

Updating old memories with new, more current information is critical for human survival, yet the neural mechanisms for memory updating in general and the effect of retrieval practice in particular are poorly understood. Using a three-day A-B/A-C memory updating paradigm, we found that compared to restudy, retrieval practice could strengthen new A-C memories and reduce old A-B memory intrusion, but did not suppress A-B memories. Neural activation pattern analysis revealed that compared to restudy, retrieval practice led to stronger target representation in the medial prefrontal cortex (MPFC) during the final test. Critically, only under the retrieval practice condition that the MPFC showed strong and comparable competitor evidence for both correct and incorrect trials during final test, and the MPFC target representation during updating was predictive of subsequent memory. These results suggest that retrieval practice could facilitate memory updating by strongly engaging MPFC mechanisms in memory integration, differentiation and consolidation.

Data availability

All fMRI data collected in this study is available on OpenNeuro under the accession number 002773 (https://openneuro.org/datasets/ds002773).

The following data sets were generated

Article and author information

Author details

  1. Zhifang Ye

    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0489-2619
  2. Liang Shi

    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Anqi Li

    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chuansheng Chen

    Department of Psychological Science, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gui Xue

    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing, China
    For correspondence
    gxue@bnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7891-8151

Funding

National Science Foundation of China (31730038)

  • Gui Xue

The NSFC and the Israel Science Foundation joint project (31861143040)

  • Gui Xue

National Science Foundation of China (61621136008)

  • Gui Xue

German Research Foundation (TRR-169)

  • Gui Xue

Guangdong Pearl River Talents Plan Innovative and Entrepreneurial Team grant (2016ZT06S220)

  • Gui Xue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Written consent was obtained from each subject after a full explanation of the study procedure. The study was approved by the Institutional Review Boards at Beijing Normal University and the Center for MRI Research at Peking University (#20150401).

Copyright

© 2020, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,694
    views
  • 556
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhifang Ye
  2. Liang Shi
  3. Anqi Li
  4. Chuansheng Chen
  5. Gui Xue
(2020)
Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations
eLife 9:e57023.
https://doi.org/10.7554/eLife.57023

Share this article

https://doi.org/10.7554/eLife.57023

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.