PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine enrichment

  1. Yukiko Imai
  2. Mathilde Biot
  3. Julie Clément
  4. Mariko Teragaki
  5. Serge Urbach
  6. Thomas Robert
  7. Frédéric Baudat
  8. Corinne Grey
  9. Bernard de Massy  Is a corresponding author
  1. National Institute of Genetics, Japan
  2. CNRS UM, France
  3. CNRS INSERM UM, France

Abstract

Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) at specific genomic locations that correspond to PRDM9 binding sites. The molecular steps occurring from PRDM9 binding to DSB formation are unknown. Using proteomic approaches to find PRDM9 partners, we identified HELLS, a member of the SNF2-like family of chromatin remodelers. Upon functional analyses during mouse male meiosis, we demonstrated that HELLS is required for PRDM9 binding and DSB activity at PRDM9 sites. However, HELLS is not required for DSB activity at PRDM9-independent sites. HELLS is also essential for 5-hydroxymethylcytosine (5hmC) enrichment at PRDM9 sites. Analyses of 5hmC in mice deficient for SPO11, which catalyzes DSB formation, and in PRDM9 methyltransferase deficient mice reveal that 5hmC is triggered at DSB-prone sites upon PRDM9 binding and histone modification, but independent of DSB activity. These findings highlight the complex regulation of the chromatin and epigenetic environments at PRDM9-specified hotspots.

Data availability

PRIDE partner repository with the dataset identifier PXD017337. NGS data have been deposited at GEO under series record GSE145768. Source data have been provided for Figure 2C-D and Figure 3G

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yukiko Imai

    Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
    Competing interests
    No competing interests declared.
  2. Mathilde Biot

    Institute of Human Genetics UMR9002, CNRS UM, Montpellier, France
    Competing interests
    No competing interests declared.
  3. Julie Clément

    Institut de Génétique Humaine, CNRS UM, Montpellier, France
    Competing interests
    No competing interests declared.
  4. Mariko Teragaki

    Institute of Human Genetics UMR9002, CNRS UM, Montpellier, France
    Competing interests
    No competing interests declared.
  5. Serge Urbach

    Institut de Génomique Fonctionnelle, CNRS INSERM UM, Montpellier, France
    Competing interests
    No competing interests declared.
  6. Thomas Robert

    Centre de Biologie Structurale, CNRS INSERM UM, Montpellier, France
    Competing interests
    No competing interests declared.
  7. Frédéric Baudat

    Institute of Human Genetics, CNRS UPR1142, CNRS UM, Montpellier, France
    Competing interests
    No competing interests declared.
  8. Corinne Grey

    Institute of Human Genetics UMR9002, CNRS UM, Montpellier, France
    Competing interests
    No competing interests declared.
  9. Bernard de Massy

    Institute of Human Genetics UMR9002, CNRS UM, Montpellier, France
    For correspondence
    bernard.de-massy@igh.cnrs.fr
    Competing interests
    Bernard de Massy, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0950-2758

Funding

ERC (322788)

  • Bernard de Massy

MSDAVenir (Gene-IGH)

  • Bernard de Massy

Fondation Bettencourt Schueller

  • Bernard de Massy

Fondation pour la Recherche Médicale

  • Mathilde Biot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adèle L Marston, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: All experiments were carried out according to the CNRS guidelines and were approved by the ethics committee on live animals (project CE-LR-0812 and 1295).

Version history

  1. Received: March 20, 2020
  2. Accepted: September 16, 2020
  3. Accepted Manuscript published: October 13, 2020 (version 1)
  4. Version of Record published: October 30, 2020 (version 2)

Copyright

© 2020, Imai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,036
    views
  • 341
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yukiko Imai
  2. Mathilde Biot
  3. Julie Clément
  4. Mariko Teragaki
  5. Serge Urbach
  6. Thomas Robert
  7. Frédéric Baudat
  8. Corinne Grey
  9. Bernard de Massy
(2020)
PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine enrichment
eLife 9:e57117.
https://doi.org/10.7554/eLife.57117

Share this article

https://doi.org/10.7554/eLife.57117

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.