Evidence for transmission of COVID-19 prior to symptom onset

  1. Lauren C Tindale
  2. Jessica E Stockdale
  3. Michelle Coombe
  4. Emma S Garlock
  5. Wing Yin Venus Lau
  6. Manu Saraswat
  7. Louxin Zhang
  8. Dongxuan Chen
  9. Jacco Wallinga
  10. Caroline Colijn  Is a corresponding author
  1. University of British Columbia, Canada
  2. Simon Fraser University, Canada
  3. National University of Singapore, Singapore
  4. National Institute for Public Health and the Environment, Netherlands
  5. Leiden University Medical Center, Netherlands

Abstract

We collated contact tracing data from COVID-19 clusters in Singapore and Tianjin, China and estimated the extent of pre-symptomatic transmission by estimating incubation periods and serial intervals. The mean incubation periods accounting for intermediate cases were 4.91 days (95%CI 4.35, 5.69) and 7.54 (95%CI 6.76, 8.56) days for Singapore and Tianjin, respectively. The mean serial interval was 4.17 (95%CI 2.44, 5.89) and 4.31 (95%CI 2.91, 5.72) days (Singapore, Tianjin). The serial intervals are shorter than incubation periods, suggesting that pre-symptomatic transmission may occur in a large proportion of transmission events (0.4-0.5 in Singapore and 0.6-0.8 in Tianjin, in our analysis with intermediate cases, and more without intermediates). Given the evidence for pre-symptomatic transmission it is vital that even individuals who appear healthy abide by public health measures to control COVID-19.

Data availability

Data are available on github at github.com/CSSEGISandData/COVID-19. Code to produce all analyses is also available there. Source data files of the Singapore and Tianjin clusters have been provided.

Article and author information

Author details

  1. Lauren C Tindale

    Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
  2. Jessica E Stockdale

    Mathematics, Simon Fraser University, Burnaby, Canada
    Competing interests
    No competing interests declared.
  3. Michelle Coombe

    School of Population and Public Health, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
  4. Emma S Garlock

    Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
    Competing interests
    No competing interests declared.
  5. Wing Yin Venus Lau

    Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
    Competing interests
    No competing interests declared.
  6. Manu Saraswat

    Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
  7. Louxin Zhang

    Department of Mathematics, National University of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0260-824X
  8. Dongxuan Chen

    Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
    Competing interests
    No competing interests declared.
  9. Jacco Wallinga

    Faculteit Geneeskunde, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    Jacco Wallinga, Reviewing editor, eLife.
  10. Caroline Colijn

    Mathematics, Simon Fraser University, Burnaby, Canada
    For correspondence
    ccolijn@sfu.ca
    Competing interests
    Caroline Colijn, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6097-6708

Funding

Government of Canada (Canada 150 Research Chair program)

  • Caroline Colijn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tindale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,473
    views
  • 1,046
    downloads
  • 253
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren C Tindale
  2. Jessica E Stockdale
  3. Michelle Coombe
  4. Emma S Garlock
  5. Wing Yin Venus Lau
  6. Manu Saraswat
  7. Louxin Zhang
  8. Dongxuan Chen
  9. Jacco Wallinga
  10. Caroline Colijn
(2020)
Evidence for transmission of COVID-19 prior to symptom onset
eLife 9:e57149.
https://doi.org/10.7554/eLife.57149

Share this article

https://doi.org/10.7554/eLife.57149

Further reading

    1. Epidemiology and Global Health
    Yuan Zhang, Dan Tang ... Xing Zhao
    Research Article

    Background:

    Biological aging exhibits heterogeneity across multi-organ systems. However, it remains unclear how is lifestyle associated with overall and organ-specific aging and which factors contribute most in Southwest China.

    Methods:

    This study involved 8396 participants who completed two surveys from the China Multi-Ethnic Cohort (CMEC) study. The healthy lifestyle index (HLI) was developed using five lifestyle factors: smoking, alcohol, diet, exercise, and sleep. The comprehensive and organ-specific biological ages (BAs) were calculated using the Klemera–Doubal method based on longitudinal clinical laboratory measurements, and validation were conducted to select BA reflecting related diseases. Fixed effects model was used to examine the associations between HLI or its components and the acceleration of validated BAs. We further evaluated the relative contribution of lifestyle components to comprehension and organ systems BAs using quantile G-computation.

    Results:

    About two-thirds of participants changed HLI scores between surveys. After validation, three organ-specific BAs (the cardiopulmonary, metabolic, and liver BAs) were identified as reflective of specific diseases and included in further analyses with the comprehensive BA. The health alterations in HLI showed a protective association with the acceleration of all BAs, with a mean shift of –0.19 (95% CI −0.34, –0.03) in the comprehensive BA acceleration. Diet and smoking were the major contributors to overall negative associations of five lifestyle factors, with the comprehensive BA and metabolic BA accounting for 24% and 55% respectively.

    Conclusions:

    Healthy lifestyle changes were inversely related to comprehensive and organ-specific biological aging in Southwest China, with diet and smoking contributing most to comprehensive and metabolic BA separately. Our findings highlight the potential of lifestyle interventions to decelerate aging and identify intervention targets to limit organ-specific aging in less-developed regions.

    Funding:

    This work was primarily supported by the National Natural Science Foundation of China (Grant No. 82273740) and Sichuan Science and Technology Program (Natural Science Foundation of Sichuan Province, Grant No. 2024NSFSC0552). The CMEC study was funded by the National Key Research and Development Program of China (Grant No. 2017YFC0907305, 2017YFC0907300). The sponsors had no role in the design, analysis, interpretation, or writing of this article.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).