Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to Oesophageal Adenocarcinoma

  1. Connor Rogerson
  2. Samuel Ogden
  3. Edward Britton
  4. the OCCAMS consortium
  5. Yeng Ang  Is a corresponding author
  6. Andrew D Sharrocks  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Manchester, United Kingdom

Abstract

Oesophageal adenocarcinoma (OAC) is one of the most common causes of cancer deaths. Barrett's oesophagus (BO) is the only known precancerous precursor to OAC, but our understanding about the molecular events leading to OAC development is limited. Here, we have integrated gene expression and chromatin accessibility profiles of human biopsies and identified a strong cell cycle gene expression signature in OAC compared to BO. Through analysing associated chromatin accessibility changes, we have implicated the transcription factor KLF5 in the transition from BO to OAC. Importantly, we show that KLF5 expression is unchanged during this transition, but instead, KLF5 is redistributed across chromatin to directly regulate cell cycle genes specifically in OAC cells. This new KLF5 target gene programme has potential prognostic significance as high levels correlate with poorer patient survival. Thus, the repurposing of KLF5 for novel regulatory activity in OAC provides new insights into the mechanisms behind disease progression.

Data availability

All sequencing data are deposited in ArrayExpress. Additional OAC ATAC-seq data are available at E-MTAB-8447 and additional BO and OAC RNA-seq data are available at E-MTAB-8584. siKLF5 RNA-seq data are available at E-MTAB-8446. KLF5 ChIP-seq data are available at E-MTAB-8568. siERBB2 ATAC-seq and RNA-seq data are available at E-MTAB-8576 and E-MTAB-8579 respectively.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Connor Rogerson

    Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1425-9668
  2. Samuel Ogden

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward Britton

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. the OCCAMS consortium

  5. Yeng Ang

    School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    For correspondence
    Yeng.Ang@srft.nhs.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0496-6710
  6. Andrew D Sharrocks

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    For correspondence
    andrew.d.sharrocks@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7395-9552

Funding

Cancer Research UK (Clinical PhD and PhD funding)

  • Connor Rogerson
  • Edward Britton
  • Yeng Ang
  • Andrew D Sharrocks

Wellcome (Programme grant and studentship103857/Z/14/Z)

  • Samuel Ogden
  • Andrew D Sharrocks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was via the ethics committee of Salford Royal NHS Foundation Trust (04/Q1410/57). Patient consent was obtained in written form and signed by the patient and doctor.

Reviewing Editor

  1. Irwin Davidson, Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Publication history

  1. Received: March 24, 2020
  2. Accepted: September 3, 2020
  3. Accepted Manuscript published: September 3, 2020 (version 1)
  4. Version of Record published: October 8, 2020 (version 2)

Copyright

© 2020, Rogerson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,147
    Page views
  • 204
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Connor Rogerson
  2. Samuel Ogden
  3. Edward Britton
  4. the OCCAMS consortium
  5. Yeng Ang
  6. Andrew D Sharrocks
(2020)
Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to Oesophageal Adenocarcinoma
eLife 9:e57189.
https://doi.org/10.7554/eLife.57189

Further reading

    1. Cancer Biology
    2. Microbiology and Infectious Disease
    Changkun Hu, Taylor Bugbee ... Nicholas Wallace
    Research Article Updated

    Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.

    1. Cancer Biology
    Rosa Elena Menjivar, Zeribe C Nwosu ... Marina Pasca di Magliano
    Research Article

    An extensive fibroinflammatory stroma rich in macrophages is a hallmark of pancreatic cancer. In this disease, it is well appreciated that macrophages are immunosuppressive and contribute to the poor response to immunotherapy; however, the mechanisms of immune suppression are complex and not fully understood. Immunosuppressive macrophages are classically defined by expression of the enzyme Arginase 1 (Arg1), which we demonstrated is potently expressed in pancreatic tumor associated macrophages from both human patients and mouse models. While routinely used as a polarization marker, Arg1 also catabolizes arginine, an amino acid required for T cell activation and proliferation. To investigate this metabolic function, we used a genetic and a pharmacologic approach to target Arg1 in pancreatic cancer. Genetic inactivation of Arg1 in macrophages, using a dual recombinase genetically engineered mouse model of pancreatic cancer, delayed formation of invasive disease, while increasing CD8+ T cell infiltration. Additionally, Arg1 deletion induced compensatory mechanisms, including Arg1 overexpression in epithelial cells, namely Tuft cells, and Arg2 overexpression in a subset of macrophages. To overcome these compensatory mechanisms, we used a pharmacological approach to inhibit arginase. Treatment of established tumors with the arginase inhibitor CB-1158 exhibited further increased CD8+ T cell infiltration, beyond that seen with the macrophage-specific knockout, and sensitized the tumors to anti-PD1 immune checkpoint blockade. Our data demonstrate that Arg1 drives immune suppression in pancreatic cancer by depleting Arginine and inhibiting T cell activation.