Globus pallidus dynamics reveal covert strategies for behavioral inhibition

  1. Bon-Mi Gu
  2. Robert Schmidt
  3. Joshua D Berke  Is a corresponding author
  1. UCSF, United States
  2. University of Sheffield, Germany

Abstract

Flexible behavior requires restraint of actions that are no longer appropriate. This behavioral inhibition critically relies on frontal cortex - basal ganglia circuits. Within the basal ganglia the globus pallidus pars externa (GPe), has been hypothesized to mediate selective proactive inhibition: being prepared to stop a specific action, if needed. Here we investigate population dynamics of rat GPe neurons during preparation-to-stop, stopping, and going. Rats selectively engaged proactive inhibition towards specific actions, as shown by slowed reaction times (RTs). Under proactive inhibition, GPe population activity occupied state-space locations farther from the trajectory followed during normal movement initiation. Furthermore, the state-space locations were predictive of distinct types of errors: failures-to-stop, failures-to-go, and incorrect choices. Slowed RTs on correct proactive trials reflected starting bias towards the alternative action, which was overcome before progressing towards action initiation. Our results demonstrate that rats can exert cognitive control via strategic adjustments to their GPe network state.

Data availability

Data and Code Availability. The neurophysiology data and analysis code used in this study are available from the to the public website Figshare: https://figshare.com/articles/Globus_pallidus_dynamics_reveal_covert_strategies_for_behavioral_inhibition/12367541

Article and author information

Author details

  1. Bon-Mi Gu

    Neurology, UCSF, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robert Schmidt

    Department of Psychology, University of Sheffield, Sheffield, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua D Berke

    Neurology, UCSF, San Francisco, United States
    For correspondence
    joshua.berke@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1436-6823

Funding

National Institute of Mental Health (R01 MH101697)

  • Joshua D Berke

National Institute on Drug Abuse (R01 DA045783)

  • Joshua D Berke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the University of California, San Francisco Committee for the Use and Care of Animals (approval number: AN181071).

Reviewing Editor

  1. Daeyeol Lee, Johns Hopkins University, United States

Publication history

  1. Received: March 25, 2020
  2. Accepted: June 9, 2020
  3. Accepted Manuscript published: June 10, 2020 (version 1)
  4. Version of Record published: June 24, 2020 (version 2)

Copyright

© 2020, Gu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,486
    Page views
  • 279
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bon-Mi Gu
  2. Robert Schmidt
  3. Joshua D Berke
(2020)
Globus pallidus dynamics reveal covert strategies for behavioral inhibition
eLife 9:e57215.
https://doi.org/10.7554/eLife.57215

Further reading

    1. Neuroscience
    Yonatan Sanz Perl, Sol Fittipaldi ... Enzo Tagliazucchi
    Research Article

    The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.

    1. Neuroscience
    Andrea Alamia, Lucie Terral ... Rufin VanRullen
    Research Article Updated

    Previous research has associated alpha-band [8–12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N = 16, two previously published datasets with N = 16 and N = 31). Participants were instructed to detect a brief target by covertly attending to the screen’s left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with and without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.