Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks

  1. Víctor J López-Madrona
  2. Elena Pérez-Montoyo
  3. Efrén Álvarez-Salvado
  4. David Moratal
  5. Oscar Herreras
  6. Ernesto Pereda
  7. Claudio R Mirasso
  8. Santiago Canals  Is a corresponding author
  1. Universidad Miguel Hernández, Spain
  2. Universitat Politècnica de València, Spain
  3. Cajal Institute, Spain
  4. Universidad de La Laguna, Spain
  5. Universitat de les Illes Balears, Spain

Abstract

Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.

Data availability

All datasets are available at: http://dx.doi.org/10.20350/digitalCSIC/12537

The following data sets were generated

Article and author information

Author details

  1. Víctor J López-Madrona

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8234-7160
  2. Elena Pérez-Montoyo

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Efrén Álvarez-Salvado

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. David Moratal

    Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, València, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Oscar Herreras

    Department of Systems Neuroscience, Cajal Institute, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8210-3710
  6. Ernesto Pereda

    Departamento de Ingeniería Industrial, Universidad de La Laguna, La Laguna, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio R Mirasso

    Instituto de Física Interdisciplinar y Sistemas Complejos, Universitat de les Illes Balears, Palma de Mallorca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2980-7038
  8. Santiago Canals

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    For correspondence
    scanals@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2175-8139

Funding

European Regional Development Fund (BFU2015-64380-C2-1-R)

  • Santiago Canals

European Regional Development Fund (BFU2015-64380-C2-2-R)

  • David Moratal

European Regional Development Fund (PGC2018-101055-B-I00)

  • Santiago Canals

Horizon 2020 Framework Programme (668863 (SyBil-AA))

  • Santiago Canals

Spanish State Research Agency (SEV- 2017-0723)

  • Santiago Canals

MINECO (TEC2016-80063-C3-3-R)

  • Claudio R Mirasso

MINECO (TEC2016-80063-C3-2-R)

  • Ernesto Pereda

Spanish State Research Agency (MDM-2017-0711)

  • Claudio R Mirasso

MINECO (SAF2016-80100-R)

  • Oscar Herreras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Ethics

Animal experimentation: All animal experiments were approved by the Animal Care and Use Committee of the Instituto de Neurociencias de Alicante, Alicante, Spain, and comply with the Spanish (law 32/2007) and European regulations (EU directive 86/609, EU decree 2001-486, and EU recommendation 2007/526/EC).

Version history

  1. Received: March 27, 2020
  2. Accepted: July 19, 2020
  3. Accepted Manuscript published: July 20, 2020 (version 1)
  4. Accepted Manuscript updated: July 22, 2020 (version 2)
  5. Version of Record published: August 7, 2020 (version 3)

Copyright

© 2020, López-Madrona et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,965
    views
  • 655
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Víctor J López-Madrona
  2. Elena Pérez-Montoyo
  3. Efrén Álvarez-Salvado
  4. David Moratal
  5. Oscar Herreras
  6. Ernesto Pereda
  7. Claudio R Mirasso
  8. Santiago Canals
(2020)
Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks
eLife 9:e57313.
https://doi.org/10.7554/eLife.57313

Share this article

https://doi.org/10.7554/eLife.57313

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.