Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks

  1. Víctor J López-Madrona
  2. Elena Pérez-Montoyo
  3. Efrén Álvarez-Salvado
  4. David Moratal
  5. Oscar Herreras
  6. Ernesto Pereda
  7. Claudio R Mirasso
  8. Santiago Canals  Is a corresponding author
  1. Universidad Miguel Hernández, Spain
  2. Universitat Politècnica de València, Spain
  3. Cajal Institute, Spain
  4. Universidad de La Laguna, Spain
  5. Universitat de les Illes Balears, Spain

Abstract

Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.

Data availability

All datasets are available at: http://dx.doi.org/10.20350/digitalCSIC/12537

The following data sets were generated

Article and author information

Author details

  1. Víctor J López-Madrona

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8234-7160
  2. Elena Pérez-Montoyo

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Efrén Álvarez-Salvado

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. David Moratal

    Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, València, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Oscar Herreras

    Department of Systems Neuroscience, Cajal Institute, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8210-3710
  6. Ernesto Pereda

    Departamento de Ingeniería Industrial, Universidad de La Laguna, La Laguna, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio R Mirasso

    Instituto de Física Interdisciplinar y Sistemas Complejos, Universitat de les Illes Balears, Palma de Mallorca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2980-7038
  8. Santiago Canals

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    For correspondence
    scanals@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2175-8139

Funding

European Regional Development Fund (BFU2015-64380-C2-1-R)

  • Santiago Canals

European Regional Development Fund (BFU2015-64380-C2-2-R)

  • David Moratal

European Regional Development Fund (PGC2018-101055-B-I00)

  • Santiago Canals

Horizon 2020 Framework Programme (668863 (SyBil-AA))

  • Santiago Canals

Spanish State Research Agency (SEV- 2017-0723)

  • Santiago Canals

MINECO (TEC2016-80063-C3-3-R)

  • Claudio R Mirasso

MINECO (TEC2016-80063-C3-2-R)

  • Ernesto Pereda

Spanish State Research Agency (MDM-2017-0711)

  • Claudio R Mirasso

MINECO (SAF2016-80100-R)

  • Oscar Herreras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Ethics

Animal experimentation: All animal experiments were approved by the Animal Care and Use Committee of the Instituto de Neurociencias de Alicante, Alicante, Spain, and comply with the Spanish (law 32/2007) and European regulations (EU directive 86/609, EU decree 2001-486, and EU recommendation 2007/526/EC).

Version history

  1. Received: March 27, 2020
  2. Accepted: July 19, 2020
  3. Accepted Manuscript published: July 20, 2020 (version 1)
  4. Accepted Manuscript updated: July 22, 2020 (version 2)
  5. Version of Record published: August 7, 2020 (version 3)

Copyright

© 2020, López-Madrona et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,876
    views
  • 644
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Víctor J López-Madrona
  2. Elena Pérez-Montoyo
  3. Efrén Álvarez-Salvado
  4. David Moratal
  5. Oscar Herreras
  6. Ernesto Pereda
  7. Claudio R Mirasso
  8. Santiago Canals
(2020)
Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks
eLife 9:e57313.
https://doi.org/10.7554/eLife.57313

Share this article

https://doi.org/10.7554/eLife.57313

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.