Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks

  1. Víctor J López-Madrona
  2. Elena Pérez-Montoyo
  3. Efrén Álvarez-Salvado
  4. David Moratal
  5. Oscar Herreras
  6. Ernesto Pereda
  7. Claudio R Mirasso
  8. Santiago Canals  Is a corresponding author
  1. Universidad Miguel Hernández, Spain
  2. Universitat Politècnica de València, Spain
  3. Cajal Institute, Spain
  4. Universidad de La Laguna, Spain
  5. Universitat de les Illes Balears, Spain
  6. Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Spain

Abstract

Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.

Data availability

All datasets are available at: http://dx.doi.org/10.20350/digitalCSIC/12537

The following data sets were generated

Article and author information

Author details

  1. Víctor J López-Madrona

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8234-7160
  2. Elena Pérez-Montoyo

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Efrén Álvarez-Salvado

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. David Moratal

    Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, València, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Oscar Herreras

    Department of Systems Neuroscience, Cajal Institute, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8210-3710
  6. Ernesto Pereda

    Departamento de Ingeniería Industrial, Universidad de La Laguna, La Laguna, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio R Mirasso

    Instituto de Física Interdisciplinar y Sistemas Complejos, Universitat de les Illes Balears, Palma de Mallorca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2980-7038
  8. Santiago Canals

    Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, San Juan de Alicante, Spain
    For correspondence
    scanals@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2175-8139

Funding

European Regional Development Fund (BFU2015-64380-C2-1-R)

  • Santiago Canals

European Regional Development Fund (BFU2015-64380-C2-2-R)

  • David Moratal

European Regional Development Fund (PGC2018-101055-B-I00)

  • Santiago Canals

Horizon 2020 Framework Programme (668863 (SyBil-AA))

  • Santiago Canals

Spanish State Research Agency (SEV- 2017-0723)

  • Santiago Canals

MINECO (TEC2016-80063-C3-3-R)

  • Claudio R Mirasso

MINECO (TEC2016-80063-C3-2-R)

  • Ernesto Pereda

Spanish State Research Agency (MDM-2017-0711)

  • Claudio R Mirasso

MINECO (SAF2016-80100-R)

  • Oscar Herreras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Ethics

Animal experimentation: All animal experiments were approved by the Animal Care and Use Committee of the Instituto de Neurociencias de Alicante, Alicante, Spain, and comply with the Spanish (law 32/2007) and European regulations (EU directive 86/609, EU decree 2001-486, and EU recommendation 2007/526/EC).

Version history

  1. Received: March 27, 2020
  2. Accepted: July 19, 2020
  3. Accepted Manuscript published: July 20, 2020 (version 1)
  4. Accepted Manuscript updated: July 22, 2020 (version 2)
  5. Version of Record published: August 7, 2020 (version 3)

Copyright

© 2020, López-Madrona et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,829
    Page views
  • 639
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Víctor J López-Madrona
  2. Elena Pérez-Montoyo
  3. Efrén Álvarez-Salvado
  4. David Moratal
  5. Oscar Herreras
  6. Ernesto Pereda
  7. Claudio R Mirasso
  8. Santiago Canals
(2020)
Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks
eLife 9:e57313.
https://doi.org/10.7554/eLife.57313

Share this article

https://doi.org/10.7554/eLife.57313

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.