Mesoscopic-scale functional networks in the primate amygdala

  1. Jeremiah K Morrow
  2. Michael X Cohen
  3. Katalin M Gothard  Is a corresponding author
  1. University of Arizona, United States
  2. Radboud University Nijmegen, Netherlands

Abstract

The primate amygdala performs multiple functions that may be related to the anatomical heterogeneity of its nuclei. Individual neurons with stimulus- and task-specific responses are not clustered in any of the nuclei, suggesting that single-units may be too-fine grained to shed light on the mesoscale organization of the amygdala. We have extracted from local field potentials recorded simultaneously from multiple locations within the primate (Macaca mulatta) amygdala spatially defined and statistically separable responses to visual, tactile, and auditory stimuli. A generalized eigendecomposition-based method of source separation isolated coactivity patterns, or components, that in neurophysiological terms correspond to putative subnetworks. Some component spatial patterns mapped onto the anatomical organization of the amygdala, while other components reflected integration across nuclei. These components differentiated between visual, tactile, and auditory stimuli suggesting the presence of functionally distinct parallel subnetworks.

Data availability

All source data (i.e., the raw LFP from all recording sessions) have been deposited in the Zenodo repository (https://doi.org/10.5281/zenodo.3752137). The MATLAB scripts and supporting Excel data files used to process the data shown in each figure are provided with this submission.

The following data sets were generated

Article and author information

Author details

  1. Jeremiah K Morrow

    Department of Physiology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael X Cohen

    Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1879-3593
  3. Katalin M Gothard

    Department of Physiology, University of Arizona, Tucson, United States
    For correspondence
    kgothard@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9642-2985

Funding

National Institute of Mental Health (P50MH100023)

  • Katalin M Gothard

National Institute of Mental Health (R01MH121009)

  • Katalin M Gothard

European Research Council (StG 638589)

  • Michael X Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures comply with the NIH guidelines for the use of non-human primates in research as outlined in the Guide for the Care and Use of Laboratory Animals and have been approved by the Institutional Animal Care and Use Committee of the University of Arizona (protocol #08‐101).

Reviewing Editor

  1. Daeyeol Lee, Johns Hopkins University, United States

Publication history

  1. Received: March 27, 2020
  2. Accepted: August 24, 2020
  3. Accepted Manuscript published: September 2, 2020 (version 1)
  4. Version of Record published: September 14, 2020 (version 2)

Copyright

© 2020, Morrow et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,570
    Page views
  • 171
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremiah K Morrow
  2. Michael X Cohen
  3. Katalin M Gothard
(2020)
Mesoscopic-scale functional networks in the primate amygdala
eLife 9:e57341.
https://doi.org/10.7554/eLife.57341

Further reading

    1. Neuroscience
    Claire Wyart
    Insight

    Sensory neurons previously shown to optimize speed and balance in fish by providing information about the curvature of the spine show similar morphology and connectivity in mice.

    1. Neuroscience
    Catharina Zich, Andrew J Quinn ... Sven Bestmann
    Research Article

    Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral and spatiotemporal characteristics, indicating distinct functional roles.