Abstract

Extant protein-coding sequences span a huge range of ages, from those that emerged only recently, to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be 'phylostratigraphy' trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.

Data availability

All scripts used in this work can be accessed at: https://github.com/MaselLab/ProteinEvolution. Our raw data, and homology files used in our analyses, are available at https://doi.org/10.6084/m9.figshare.12037281.

The following previously published data sets were used
    1. NCBI
    (2020) NCBI
    NCBI, https://www.ncbi.nlm.nih.gov/.
    1. Ensembl
    (2020) Ensembl
    Ensembl, https://uswest.ensembl.org/index.html.

Article and author information

Author details

  1. Jennifer E James

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    For correspondence
    jejames@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0518-6783
  2. Sara M Willis

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul G Nelson

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Weibel

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Luke J Kosinski

    Department of Molecular Cell Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joanna Masel

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    For correspondence
    masel@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7398-2127

Funding

John Templeton Foundation (60814)

  • Joanna Masel

National Institutes of Health (GM-104040)

  • Joanna Masel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian R Landry, Université Laval, Canada

Version history

  1. Received: March 28, 2020
  2. Accepted: January 5, 2021
  3. Accepted Manuscript published: January 8, 2021 (version 1)
  4. Version of Record published: January 21, 2021 (version 2)

Copyright

© 2021, James et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,727
    views
  • 185
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer E James
  2. Sara M Willis
  3. Paul G Nelson
  4. Catherine Weibel
  5. Luke J Kosinski
  6. Joanna Masel
(2021)
Universal and taxon-specific trends in protein sequences as a function of age
eLife 10:e57347.
https://doi.org/10.7554/eLife.57347

Share this article

https://doi.org/10.7554/eLife.57347

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Evolutionary Biology
    Robert Horvath, Nikolaos Minadakis ... Anne C Roulin
    Research Article

    Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.