Universal and taxon-specific trends in protein sequences as a function of age

  1. Jennifer E James  Is a corresponding author
  2. Sara M Willis
  3. Paul G Nelson
  4. Catherine Weibel
  5. Luke J Kosinski
  6. Joanna Masel  Is a corresponding author
  1. University of Arizona, United States

Abstract

Extant protein-coding sequences span a huge range of ages, from those that emerged only recently, to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be 'phylostratigraphy' trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.

Data availability

All scripts used in this work can be accessed at: https://github.com/MaselLab/ProteinEvolution. Our raw data, and homology files used in our analyses, are available at https://doi.org/10.6084/m9.figshare.12037281.

The following previously published data sets were used
    1. NCBI
    (2020) NCBI
    NCBI, https://www.ncbi.nlm.nih.gov/.
    1. Ensembl
    (2020) Ensembl
    Ensembl, https://uswest.ensembl.org/index.html.

Article and author information

Author details

  1. Jennifer E James

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    For correspondence
    jejames@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0518-6783
  2. Sara M Willis

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul G Nelson

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Weibel

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Luke J Kosinski

    Department of Molecular Cell Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joanna Masel

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
    For correspondence
    masel@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7398-2127

Funding

John Templeton Foundation (60814)

  • Joanna Masel

National Institutes of Health (GM-104040)

  • Joanna Masel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian R Landry, Université Laval, Canada

Publication history

  1. Received: March 28, 2020
  2. Accepted: January 5, 2021
  3. Accepted Manuscript published: January 8, 2021 (version 1)
  4. Version of Record published: January 21, 2021 (version 2)

Copyright

© 2021, James et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,333
    Page views
  • 151
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer E James
  2. Sara M Willis
  3. Paul G Nelson
  4. Catherine Weibel
  5. Luke J Kosinski
  6. Joanna Masel
(2021)
Universal and taxon-specific trends in protein sequences as a function of age
eLife 10:e57347.
https://doi.org/10.7554/eLife.57347

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Austin H Patton et al.
    Research Article

    Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood and processes for surmounting fitness valleys remain controversial. One outstanding system for addressing these connections is a recent adaptive radiation of ecologically and morphologically novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 single nucleotide polymorphisms (SNPs) that were significantly associated with fitness in field enclosures. Six out of the 13 regions most strongly associated with fitness contained differentially expressed genes and fixed SNPs between trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from adaptive alleles and show that scale-eating specialists are the most isolated of the three species on these networks. Intriguingly, introgressed and de novo variants reduced fitness landscape ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness paths from generalist to specialists. Our results suggest that adaptive introgression and de novo mutations alter the shape of the fitness landscape, providing key connections in adaptive walks circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Beatriz Navarro-Dominguez et al.
    Research Article Updated

    Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive—the driver and the target—linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.