KSHV-encoded vCyclin can modulate HIF1α levels to promote DNA replication in hypoxia

Abstract

The cellular adaptive response to hypoxia, mediated by high HIF1α levels includes metabolic reprogramming, restricted DNA replication and cell division. In contrast to healthy cells, the genome of cancer cells, and Kaposi's sarcoma associated herpesvirus (KSHV) infected cells maintains replication in hypoxia. We show that KSHV infection, despite promoting expression of HIF1α in normoxia, can also restrict transcriptional activity, and promoted its degradation in hypoxia. KSHV-encoded vCyclin, expressed in hypoxia, mediated HIF1a cytosolic translocation, and its degradation through a non-canonical lysosomal pathway. Attenuation of HIF1α levels by vCyclin allowed cells to bypass the block to DNA replication and cell proliferation in hypoxia. These results demonstrated that KSHV utilizes a unique strategy to balance HIF1α levels to overcome replication arrest and induction of the oncogenic phenotype, which are dependent on the levels of oxygen in the microenvironment.

Data availability

The ChIP sequencing data has been submitted to GEO with accession number GSE149401. All data generated and analysed in this study are included in the manuscript and supporting files. Source data files have been provided for Figures: 1D, 2A, 2B, 2C, 6B and 6C. Also, source data file has been provided for supplementary Figures: Suppl. Fig. 1A, 1B, 1D, 1E , 1F, Suppl. Fig. 2A, 2B, 2C, Suppl. Fig. 5B and 5D.

The following data sets were generated

Article and author information

Author details

  1. Rajnish Kumar singh

    Otorhinolaryngology, University of Pennsylvania, 3610 Hamilton walk, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7414-1170
  2. Yonggang Pei

    Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7296-8772
  3. Dipayan Bose

    Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zachary L Lamplugh

    Otorhinolaryngology, University of Pennsylvania, 202B Johnson pavilion, 3610 Hamilton walk, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3442-0591
  5. Kunfeng Sun

    Otorhinolaryngology, University of Pennsylvania, 202B Johnson pavilion, 3610 Hamilton walk, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3874-8909
  6. Yan Yuan

    Penn Dental Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Lieberman

    Gene Expression and Regulation, Wistar, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jianxin You

    Department of Microbiology, University of Pennsylvania, philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Erle S Robertson

    Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    erle@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6088-2979

Funding

National Cancer Institute (P30-CA016520)

  • Erle S Robertson

National Cancer Institute (P01-CA174439)

  • Erle S Robertson

National Cancer Institute (U54-CA190158)

  • Erle S Robertson

National Cancer Institute (R01-CA171979)

  • Erle S Robertson

National Cancer Institute (R01-CA244074)

  • Erle S Robertson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melanie M Brinkmann, Technische Universität Braunschweig, Germany

Version history

  1. Received: March 31, 2020
  2. Preprint posted: August 12, 2020 (view preprint)
  3. Accepted: July 17, 2021
  4. Accepted Manuscript published: July 19, 2021 (version 1)
  5. Version of Record published: July 27, 2021 (version 2)

Copyright

© 2021, singh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 828
    views
  • 126
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajnish Kumar singh
  2. Yonggang Pei
  3. Dipayan Bose
  4. Zachary L Lamplugh
  5. Kunfeng Sun
  6. Yan Yuan
  7. Paul Lieberman
  8. Jianxin You
  9. Erle S Robertson
(2021)
KSHV-encoded vCyclin can modulate HIF1α levels to promote DNA replication in hypoxia
eLife 10:e57436.
https://doi.org/10.7554/eLife.57436

Share this article

https://doi.org/10.7554/eLife.57436

Further reading

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article Updated

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

    1. Microbiology and Infectious Disease
    Magdalena Podkowik, Andrew I Perault ... Bo Shopsin
    Research Article

    The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived ‘memory’ of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb−/−) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.