Tissue resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice

  1. Ying Wang
  2. Thomas S Chaffee
  3. Rebecca S LaRue
  4. Danielle N Huggins
  5. Patrice M Witschen
  6. Ayman M Ibrahim
  7. Andrew C Nelson
  8. Heather L Machado
  9. Kathryn L Schwertfeger  Is a corresponding author
  1. University of Minnesota, United States
  2. Tulane University, United States
  3. Tulane Cancer Center, Tulane School of Medicine, United States

Abstract

Tissue resident macrophages in the mammary gland are found in close association with epithelial structures and within the adipose stroma, and are important for mammary gland development and tissue homeostasis. While macrophages have been linked to ductal development in the virgin mammary gland, less is known regarding the effects of macrophages on the adipose stroma. Using transcriptional profiling and single cell RNA sequencing approaches, we identify a distinct resident stromal macrophage subpopulation within the mouse nulliparous mammary gland characterized by expression of Lyve-1, a receptor for the extracellular matrix (ECM) component hyaluronan. This subpopulation is enriched in genes associated with ECM remodeling and is specifically associated with hyaluronan-rich regions within the adipose stroma and fibrous capsule of the virgin mammary gland. Furthermore, macrophage depletion leads to enhanced accumulation of hyaluronan-associated ECM in the adipose-associated stroma, indicating that resident macrophages are important for maintaining homeostasis within the nulliparous mammary gland stroma.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE148207 and GSE148209.

The following data sets were generated

Article and author information

Author details

  1. Ying Wang

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas S Chaffee

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rebecca S LaRue

    Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Danielle N Huggins

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrice M Witschen

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ayman M Ibrahim

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew C Nelson

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Heather L Machado

    Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kathryn L Schwertfeger

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    For correspondence
    schwe251@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9755-7774

Funding

National Institutes of Health (T 32 fellowship,OD010993)

  • Patrice M Witschen

American Cancer Society (Post-doctoral fellowship,132570-PF-18-140-01-CSM)

  • Danielle N Huggins

American Cancer Society (Clinical Scholar Development Grant,132574-CSDG-18-139-01-CSM)

  • Andrew C Nelson

National Institutes of Health (R01CA212518)

  • Heather L Machado

National Institutes of Health (R01HD095858)

  • Kathryn L Schwertfeger

National Institutes of Health (R01CA235385)

  • Kathryn L Schwertfeger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carla V Rothlin, Yale School of Medicine, United States

Ethics

Animal experimentation: All animal care and procedures were approved by the Institutional Animal Care and Use Committees of the University of Minnesota (protocol #1909-37381A) and Tulane University (protocol #710) and were in accordance with the procedures detailed in the Guide for Care and Use of Laboratory Animals.

Human subjects: The study was approved for exemption (#00008356) by the Institutional Review Board at the University of Minnesota and all patients had accepted the institutional standard consent for research utilization of clinical data and samples. All patient materials were de-identified following standard protocols.

Version history

  1. Received: March 31, 2020
  2. Accepted: May 31, 2020
  3. Accepted Manuscript published: June 1, 2020 (version 1)
  4. Version of Record published: June 16, 2020 (version 2)
  5. Version of Record updated: July 2, 2020 (version 3)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,181
    views
  • 649
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Wang
  2. Thomas S Chaffee
  3. Rebecca S LaRue
  4. Danielle N Huggins
  5. Patrice M Witschen
  6. Ayman M Ibrahim
  7. Andrew C Nelson
  8. Heather L Machado
  9. Kathryn L Schwertfeger
(2020)
Tissue resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice
eLife 9:e57438.
https://doi.org/10.7554/eLife.57438

Share this article

https://doi.org/10.7554/eLife.57438

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Cheng
    Research Article

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm), however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    Vartika Sharma, Nalani Sachan ... Ashim Mukherjee
    Research Article

    The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with β-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.