Tissue resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice

  1. Ying Wang
  2. Thomas S Chaffee
  3. Rebecca S LaRue
  4. Danielle N Huggins
  5. Patrice M Witschen
  6. Ayman M Ibrahim
  7. Andrew C Nelson
  8. Heather L Machado
  9. Kathryn L Schwertfeger  Is a corresponding author
  1. University of Minnesota, United States
  2. Tulane University, United States
  3. Tulane Cancer Center, Tulane School of Medicine, United States

Abstract

Tissue resident macrophages in the mammary gland are found in close association with epithelial structures and within the adipose stroma, and are important for mammary gland development and tissue homeostasis. While macrophages have been linked to ductal development in the virgin mammary gland, less is known regarding the effects of macrophages on the adipose stroma. Using transcriptional profiling and single cell RNA sequencing approaches, we identify a distinct resident stromal macrophage subpopulation within the mouse nulliparous mammary gland characterized by expression of Lyve-1, a receptor for the extracellular matrix (ECM) component hyaluronan. This subpopulation is enriched in genes associated with ECM remodeling and is specifically associated with hyaluronan-rich regions within the adipose stroma and fibrous capsule of the virgin mammary gland. Furthermore, macrophage depletion leads to enhanced accumulation of hyaluronan-associated ECM in the adipose-associated stroma, indicating that resident macrophages are important for maintaining homeostasis within the nulliparous mammary gland stroma.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE148207 and GSE148209.

The following data sets were generated

Article and author information

Author details

  1. Ying Wang

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas S Chaffee

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rebecca S LaRue

    Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Danielle N Huggins

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrice M Witschen

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ayman M Ibrahim

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew C Nelson

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Heather L Machado

    Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kathryn L Schwertfeger

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    For correspondence
    schwe251@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9755-7774

Funding

National Institutes of Health (T 32 fellowship,OD010993)

  • Patrice M Witschen

American Cancer Society (Post-doctoral fellowship,132570-PF-18-140-01-CSM)

  • Danielle N Huggins

American Cancer Society (Clinical Scholar Development Grant,132574-CSDG-18-139-01-CSM)

  • Andrew C Nelson

National Institutes of Health (R01CA212518)

  • Heather L Machado

National Institutes of Health (R01HD095858)

  • Kathryn L Schwertfeger

National Institutes of Health (R01CA235385)

  • Kathryn L Schwertfeger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carla V Rothlin, Yale School of Medicine, United States

Ethics

Animal experimentation: All animal care and procedures were approved by the Institutional Animal Care and Use Committees of the University of Minnesota (protocol #1909-37381A) and Tulane University (protocol #710) and were in accordance with the procedures detailed in the Guide for Care and Use of Laboratory Animals.

Human subjects: The study was approved for exemption (#00008356) by the Institutional Review Board at the University of Minnesota and all patients had accepted the institutional standard consent for research utilization of clinical data and samples. All patient materials were de-identified following standard protocols.

Version history

  1. Received: March 31, 2020
  2. Accepted: May 31, 2020
  3. Accepted Manuscript published: June 1, 2020 (version 1)
  4. Version of Record published: June 16, 2020 (version 2)
  5. Version of Record updated: July 2, 2020 (version 3)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,274
    views
  • 660
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Wang
  2. Thomas S Chaffee
  3. Rebecca S LaRue
  4. Danielle N Huggins
  5. Patrice M Witschen
  6. Ayman M Ibrahim
  7. Andrew C Nelson
  8. Heather L Machado
  9. Kathryn L Schwertfeger
(2020)
Tissue resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice
eLife 9:e57438.
https://doi.org/10.7554/eLife.57438

Share this article

https://doi.org/10.7554/eLife.57438

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.