1. Developmental Biology
  2. Immunology and Inflammation
Download icon

Tissue resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice

  1. Ying Wang
  2. Thomas S Chaffee
  3. Rebecca S LaRue
  4. Danielle N Huggins
  5. Patrice M Witschen
  6. Ayman M Ibrahim
  7. Andrew C Nelson
  8. Heather L Machado
  9. Kathryn L Schwertfeger  Is a corresponding author
  1. University of Minnesota, United States
  2. Tulane University, United States
  3. Tulane Cancer Center, Tulane School of Medicine, United States
Research Article
  • Cited 23
  • Views 3,641
  • Annotations
Cite this article as: eLife 2020;9:e57438 doi: 10.7554/eLife.57438

Abstract

Tissue resident macrophages in the mammary gland are found in close association with epithelial structures and within the adipose stroma, and are important for mammary gland development and tissue homeostasis. While macrophages have been linked to ductal development in the virgin mammary gland, less is known regarding the effects of macrophages on the adipose stroma. Using transcriptional profiling and single cell RNA sequencing approaches, we identify a distinct resident stromal macrophage subpopulation within the mouse nulliparous mammary gland characterized by expression of Lyve-1, a receptor for the extracellular matrix (ECM) component hyaluronan. This subpopulation is enriched in genes associated with ECM remodeling and is specifically associated with hyaluronan-rich regions within the adipose stroma and fibrous capsule of the virgin mammary gland. Furthermore, macrophage depletion leads to enhanced accumulation of hyaluronan-associated ECM in the adipose-associated stroma, indicating that resident macrophages are important for maintaining homeostasis within the nulliparous mammary gland stroma.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE148207 and GSE148209.

The following data sets were generated

Article and author information

Author details

  1. Ying Wang

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas S Chaffee

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rebecca S LaRue

    Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Danielle N Huggins

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrice M Witschen

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ayman M Ibrahim

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew C Nelson

    Lab Medicine and Pathology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Heather L Machado

    Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kathryn L Schwertfeger

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    For correspondence
    schwe251@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9755-7774

Funding

National Institutes of Health (T 32 fellowship,OD010993)

  • Patrice M Witschen

American Cancer Society (Post-doctoral fellowship,132570-PF-18-140-01-CSM)

  • Danielle N Huggins

American Cancer Society (Clinical Scholar Development Grant,132574-CSDG-18-139-01-CSM)

  • Andrew C Nelson

National Institutes of Health (R01CA212518)

  • Heather L Machado

National Institutes of Health (R01HD095858)

  • Kathryn L Schwertfeger

National Institutes of Health (R01CA235385)

  • Kathryn L Schwertfeger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and procedures were approved by the Institutional Animal Care and Use Committees of the University of Minnesota (protocol #1909-37381A) and Tulane University (protocol #710) and were in accordance with the procedures detailed in the Guide for Care and Use of Laboratory Animals.

Human subjects: The study was approved for exemption (#00008356) by the Institutional Review Board at the University of Minnesota and all patients had accepted the institutional standard consent for research utilization of clinical data and samples. All patient materials were de-identified following standard protocols.

Reviewing Editor

  1. Carla V Rothlin, Yale School of Medicine, United States

Publication history

  1. Received: March 31, 2020
  2. Accepted: May 31, 2020
  3. Accepted Manuscript published: June 1, 2020 (version 1)
  4. Version of Record published: June 16, 2020 (version 2)
  5. Version of Record updated: July 2, 2020 (version 3)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,641
    Page views
  • 374
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Shu Yang et al.
    Research Article

    Hedgehog (Hh) and bone morphogenetic proteins (BMPs) pattern the developing Drosophila wing by functioning as short- and long-range morphogens, respectively. Here, we show that a previously unknown Hh-dependent mechanism fine-tunes the activity of BMPs. Through genome-wide expression profiling of the Drosophila wing imaginal discs, we identify nord as a novel target gene of the Hh signaling pathway. Nord is related to the vertebrate Neuron Derived Neurotrophic Factor (NDNF) involved in Congenital Hypogonadotropic Hypogonadism and several types of cancer. Loss- and gain-of-function analyses implicate Nord in the regulation of wing growth and proper crossvein patterning. At the molecular level, we present biochemical evidence that Nord is a secreted BMP-binding protein and localizes to the extracellular matrix. Nord binds to Decapentaplegic (Dpp) or the heterodimer Dpp-Glass bottom boat (Gbb) to modulate their release and activity. Furthermore, we demonstrate that Nord is a dosage-depend BMP modulator, where low levels of Nord promote and high levels inhibit BMP signaling. Taken together, we propose that Hh-induced Nord expression fine tunes both the range and strength of BMP signaling in the developing Drosophila wing.

    1. Developmental Biology
    2. Evolutionary Biology
    Sarah E Westrick et al.
    Feature Article

    The Puerto Rican coquí frog Eleutherodactylus coqui (E. coqui) is both a cultural icon and a species with an unusual natural history that has attracted attention from researchers in a number of different fields within biology. Unlike most frogs, the coquí frog skips the tadpole stage, which makes it of interest to developmental biologists. The frog is best known in Puerto Rico for its notoriously loud mating call, which has allowed researchers to study aspects of social behavior such as vocal communication and courtship, while the ability of coquí to colonize new habitats has been used to explore the biology of invasive species. This article reviews research on the natural history of E. coqui and opportunities for future research.