Plasticity and evolutionary convergence in the locomotor skeleton of Greater Antillean Anolis lizards
Abstract
Plasticity can put evolution on repeat if development causes species to generate similar morphologies in similar environments. Anolis lizards offer the opportunity to put this role of developmental plasticity to the test. Following colonization of the four Greater Antillean islands, Anolis lizards independently and repeatedly evolved six ecomorphs adapted to manoeuvring different microhabitats. By quantifying the morphology of the locomotor skeleton of 95 species, we demonstrate that ecomorphs on different islands have diverged along similar trajectories. However, microhabitat-induced morphological plasticity differed between species and did not consistently improve individual locomotor performance. Consistent with this decoupling between morphological plasticity and locomotor performance, highly plastic features did not show greater evolvability, and plastic responses to microhabitat were poorly aligned with evolutionary divergence between ecomorphs. The locomotor skeleton of Anolis may have evolved within a subset of possible morphologies that are highly accessible through genetic change, enabling adaptive convergence independently of plasticity.
Data availability
Raw scans are available at Morphosource under the project ID P1059, title 'Anolis sp.' (see source data file 1 for individual DOIs). The morphological raw data is available in the source data file 2. Supplementary file 1 contains Extended Methods and supplementary tables.
-
Anolis sp.MorphoSource, P1059.
Article and author information
Author details
Funding
John Templeton Foundation (60501)
- Tobias Uller
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The study was conducted according to the Lund University Local Ethical Review Process under the permit number Dnr M 31-16.
Copyright
© 2020, Feiner et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,196
- views
-
- 372
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 16
- citations for umbrella DOI https://doi.org/10.7554/eLife.57468