Plasticity and evolutionary convergence in the locomotor skeleton of Greater Antillean Anolis lizards

  1. Nathalie Feiner  Is a corresponding author
  2. Illiam SC Jackson
  3. Kirke L Munch
  4. Reinder Radersma
  5. Tobias Uller
  1. Lund University, Sweden
  2. University of Tasmania, Australia

Abstract

Plasticity can put evolution on repeat if development causes species to generate similar morphologies in similar environments. Anolis lizards offer the opportunity to put this role of developmental plasticity to the test. Following colonization of the four Greater Antillean islands, Anolis lizards independently and repeatedly evolved six ecomorphs adapted to manoeuvring different microhabitats. By quantifying the morphology of the locomotor skeleton of 95 species, we demonstrate that ecomorphs on different islands have diverged along similar trajectories. However, microhabitat-induced morphological plasticity differed between species and did not consistently improve individual locomotor performance. Consistent with this decoupling between morphological plasticity and locomotor performance, highly plastic features did not show greater evolvability, and plastic responses to microhabitat were poorly aligned with evolutionary divergence between ecomorphs. The locomotor skeleton of Anolis may have evolved within a subset of possible morphologies that are highly accessible through genetic change, enabling adaptive convergence independently of plasticity.

Data availability

Raw scans are available at Morphosource under the project ID P1059, title 'Anolis sp.' (see source data file 1 for individual DOIs). The morphological raw data is available in the source data file 2. Supplementary file 1 contains Extended Methods and supplementary tables.

The following data sets were generated

Article and author information

Author details

  1. Nathalie Feiner

    Biology, Lund University, Lund, Sweden
    For correspondence
    nathalie.feiner@biol.lu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4648-6950
  2. Illiam SC Jackson

    Biology, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7948-2860
  3. Kirke L Munch

    School of Biological Sciences, University of Tasmania, Hobart, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Reinder Radersma

    Biology, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Tobias Uller

    Biology, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.

Funding

John Templeton Foundation (60501)

  • Tobias Uller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was conducted according to the Lund University Local Ethical Review Process under the permit number Dnr M 31-16.

Reviewing Editor

  1. Diethard Tautz, Max-Planck Institute for Evolutionary Biology, Germany

Publication history

  1. Received: April 1, 2020
  2. Accepted: August 12, 2020
  3. Accepted Manuscript published: August 13, 2020 (version 1)
  4. Version of Record published: September 22, 2020 (version 2)

Copyright

© 2020, Feiner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,746
    Page views
  • 322
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathalie Feiner
  2. Illiam SC Jackson
  3. Kirke L Munch
  4. Reinder Radersma
  5. Tobias Uller
(2020)
Plasticity and evolutionary convergence in the locomotor skeleton of Greater Antillean Anolis lizards
eLife 9:e57468.
https://doi.org/10.7554/eLife.57468

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Sílvia Chafino, Panagiotis Giannios ... Xavier Franch-Marro
    Research Article Updated

    During development, the growing organism transits through a series of temporally regulated morphological stages to generate the adult form. In humans, for example, development progresses from childhood through to puberty and then to adulthood, when sexual maturity is attained. Similarly, in holometabolous insects, immature juveniles transit to the adult form through an intermediate pupal stage when larval tissues are eliminated and the imaginal progenitor cells form the adult structures. The identity of the larval, pupal, and adult stages depends on the sequential expression of the transcription factors chinmo, Br-C, and E93. However, how these transcription factors determine temporal identity in developing tissues is poorly understood. Here, we report on the role of the larval specifier chinmo in larval and adult progenitor cells during fly development. Interestingly, chinmo promotes growth in larval and imaginal tissues in a Br-C-independent and -dependent manner, respectively. In addition, we found that the absence of chinmo during metamorphosis is critical for proper adult differentiation. Importantly, we also provide evidence that, in contrast to the well-known role of chinmo as a pro-oncogene, Br-C and E93 act as tumour suppressors. Finally, we reveal that the function of chinmo as a juvenile specifier is conserved in hemimetabolous insects as its homolog has a similar role in Blatella germanica. Taken together, our results suggest that the sequential expression of the transcription factors Chinmo, Br-C and E93 during larva, pupa an adult respectively, coordinate the formation of the different organs that constitute the adult organism.

    1. Ecology
    2. Evolutionary Biology
    Jason P Dinh, SN Patek
    Research Article Updated

    Evolutionary theory suggests that individuals should express costly traits at a magnitude that optimizes the trait bearer’s cost-benefit difference. Trait expression varies across a species because costs and benefits vary among individuals. For example, if large individuals pay lower costs than small individuals, then larger individuals should reach optimal cost-benefit differences at greater trait magnitudes. Using the cavitation-shooting weapons found in the big claws of male and female snapping shrimp, we test whether size- and sex-dependent expenditures explain scaling and sex differences in weapon size. We found that males and females from three snapping shrimp species (Alpheus heterochaelis, Alpheus angulosus, and Alpheus estuariensis) show patterns consistent with tradeoffs between weapon and abdomen size. For male A. heterochaelis, the species for which we had the greatest statistical power, smaller individuals showed steeper tradeoffs. Our extensive dataset in A. heterochaelis also included data about pairing, breeding season, and egg clutch size. Therefore, we could test for reproductive tradeoffs and benefits in this species. Female A. heterochaelis exhibited tradeoffs between weapon size and egg count, average egg volume, and total egg mass volume. For average egg volume, smaller females exhibited steeper tradeoffs. Furthermore, in males but not females, large weapons were positively correlated with the probability of being paired and the relative size of their pair mates. In conclusion, we identified size-dependent tradeoffs that could underlie reliable scaling of costly traits. Furthermore, weapons are especially beneficial to males and burdensome to females, which could explain why males have larger weapons than females.