Abstract

Neurons in primate V4 exhibit various types of selectivity for contour shapes, including curves, angles, and simple shapes. How are these neurons organized in V4 remains unclear. Using intrinsic signal optical imaging and 2-photon calcium imaging, we observed submillimeter functional domains in V4 that contained neurons preferring curved contours over rectilinear ones. These curvature domains had similar sizes and response amplitudes as orientation domains but tended to separate from these regions. Within the curvature domains, neurons that preferred circles or curve orientations clustered further into finer-scale subdomains. Nevertheless, individual neurons also had a wide range of contour selectivity, and neighboring neurons exhibited a substantial diversity in shape tuning besides their common shape preferences. In strong contrast to V4, V1 and V2 didn't have such contour-shape-related domains. These findings highlight the importance and complexity of curvature processing in visual object recognition and the key functional role of V4 in this process.

Data availability

Data and MATLAB code required to reproduce all figures are available at https://osf.io/qydj5/

The following data sets were generated

Article and author information

Author details

  1. Rendong Tang

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3622-3383
  2. Qianling Song

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9177-7429
  3. Ying Li

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Rui Zhang

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xingya Cai

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7829-3833
  6. Haidong D Lu

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    For correspondence
    haidong@bnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1739-9508

Funding

National Natural Science Foundation of China (31530029)

  • Haidong D Lu

National Natural Science Foundation of China (31625012)

  • Haidong D Lu

National Natural Science Foundation of China (31800870)

  • Rendong Tang

China Postdoctoral Science Foundation (2018M631373)

  • Rendong Tang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the National Institutes of Health Guidelines and were approved by the Institutional Animal Care and Use Committee of the Beijing Normal University. Protocol number: IACUC(BNU)-NKCNL2016-06.

Copyright

© 2020, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,701
    views
  • 227
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rendong Tang
  2. Qianling Song
  3. Ying Li
  4. Rui Zhang
  5. Xingya Cai
  6. Haidong D Lu
(2020)
Curvature-processing domains in primate V4
eLife 9:e57502.
https://doi.org/10.7554/eLife.57502

Share this article

https://doi.org/10.7554/eLife.57502

Further reading

    1. Neuroscience
    Hohyun Cho, Markus Adamek ... Peter Brunner
    Tools and Resources

    Determining the presence and frequency of neural oscillations is essential to understanding dynamic brain function. Traditional methods that detect peaks over 1/f noise within the power spectrum fail to distinguish between the fundamental frequency and harmonics of often highly non-sinusoidal neural oscillations. To overcome this limitation, we define fundamental criteria that characterize neural oscillations and introduce the cyclic homogeneous oscillation (CHO) detection method. We implemented these criteria based on an autocorrelation approach to determine an oscillation’s fundamental frequency. We evaluated CHO by verifying its performance on simulated non-sinusoidal oscillatory bursts and validated its ability to determine the fundamental frequency of neural oscillations in electrocorticographic (ECoG), electroencephalographic (EEG), and stereoelectroencephalographic (SEEG) signals recorded from 27 human subjects. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method’s specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.

    1. Neuroscience
    Jing Li, Chao Ning ... Chuan Zhou
    Research Article

    Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic–pituitary–gonadal axis in mammals to trigger the juvenile–adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.