Abstract

Neurons in primate V4 exhibit various types of selectivity for contour shapes, including curves, angles, and simple shapes. How are these neurons organized in V4 remains unclear. Using intrinsic signal optical imaging and 2-photon calcium imaging, we observed submillimeter functional domains in V4 that contained neurons preferring curved contours over rectilinear ones. These curvature domains had similar sizes and response amplitudes as orientation domains but tended to separate from these regions. Within the curvature domains, neurons that preferred circles or curve orientations clustered further into finer-scale subdomains. Nevertheless, individual neurons also had a wide range of contour selectivity, and neighboring neurons exhibited a substantial diversity in shape tuning besides their common shape preferences. In strong contrast to V4, V1 and V2 didn't have such contour-shape-related domains. These findings highlight the importance and complexity of curvature processing in visual object recognition and the key functional role of V4 in this process.

Data availability

Data and MATLAB code required to reproduce all figures are available at https://osf.io/qydj5/

The following data sets were generated

Article and author information

Author details

  1. Rendong Tang

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3622-3383
  2. Qianling Song

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9177-7429
  3. Ying Li

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Rui Zhang

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xingya Cai

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7829-3833
  6. Haidong D Lu

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    For correspondence
    haidong@bnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1739-9508

Funding

National Natural Science Foundation of China (31530029)

  • Haidong D Lu

National Natural Science Foundation of China (31625012)

  • Haidong D Lu

National Natural Science Foundation of China (31800870)

  • Rendong Tang

China Postdoctoral Science Foundation (2018M631373)

  • Rendong Tang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the National Institutes of Health Guidelines and were approved by the Institutional Animal Care and Use Committee of the Beijing Normal University. Protocol number: IACUC(BNU)-NKCNL2016-06.

Copyright

© 2020, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,792
    views
  • 236
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rendong Tang
  2. Qianling Song
  3. Ying Li
  4. Rui Zhang
  5. Xingya Cai
  6. Haidong D Lu
(2020)
Curvature-processing domains in primate V4
eLife 9:e57502.
https://doi.org/10.7554/eLife.57502

Share this article

https://doi.org/10.7554/eLife.57502

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.