Motor Performance: Acetylcholine in action

The neurotransmitter acetylcholine influences how male finches perform courtship songs by acting on a region of the premotor cortex called HVC.
  1. Erin M Wall
  2. Sarah C Woolley  Is a corresponding author
  1. Integrated Program in Neuroscience, McGill University, Canada
  2. Center for Research on Brain, Language, and Music, McGill University, Canada
  3. Department of Biology, McGill University, Canada

Acetylcholine is a neurotransmitter that helps organisms filter the vast amounts of information received from the environment. In the sensory cortex, it acts by fine-tuning the activity of neurons to heighten attention, which helps with learning and memory (Sarter and Lustig, 2019; Lee and Dan, 2012; Picciotto et al., 2012).

Heightened attention also boosts the precision and speed of movements (Song, 2019). Previous research in this area has focused on neuromodulation in the basal ganglia, a group of neural structures in the forebrain that help to select, initiate, maintain, and adapt motor actions (Berke, 2018; Mink, 1996; Turner and Desmurget, 2010). For example, dopamine is an important neurotransmitter in this region, and its loss is associated with movement disorders such as Parkinson’s disease. Disrupting acetylcholine signaling also leads to problems with movement, yet the influence of acetylcholine on motor performance is not fully understood (Conner et al., 2010). Now, in eLife, Paul Jaffe and Michael Brainard from the University of California, San Francisco report the results of experiments on songbirds that shed light on the relationship between acetylcholine, arousal, and motor performance (Jaffe and Brainard, 2020).

The team took advantage of the fact that male Bengalese finches naturally alter their song performance depending on their audience. Each male has his own song that he rehearses alone. However, when aroused and courting a female, the male produces a song that is more stereotypical (less variable), longer, and faster (Figure 1A; Sakata et al., 2008). Several specialized neural circuits – some in the cortex, and some in the basal ganglia – are required to learn and produce songs. Researchers can monitor and manipulate these circuits with precision to understand their function (Sakata and Woolley, 2020).

Acetylcholine invigorates motor performance.

(A) During courtship (top), male Bengalese finches sing louder, faster, more stereotyped songs (black notes) to females compared to when they sing alone (grey notes; bottom). (B) Using a combination of local drug infusion and electrophysiological recordings, Jaffe and Brainard demonstrated that changes to song performance may depend on acetylcholine (Ach) acting in the premotor cortical nucleus HVC. When their HVC was stimulated with a drug mimicking acetylcholine (pink infusion; top panel), male finches produced songs similar to courtship songs, despite being alone. On the other hand, blocking acetylcholine naturally released in HVC during courtship singing (bottom panel) made the courtship song performance more similar to non-courtship song even when females were present. (C) HVC is connected to the robust nucleus of the arcopallium (RA) – a region involved in motor vocal output – both directly and through a cortical-basal ganglia circuit (gray box) that involves the basal ganglia nucleus (Area X), the dorsolateral anterior thalamic nucleus (DLM), and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Creating a lesion in LMAN (blue line) while stimulating HVC with acetylcholine preserved vocal vigor, showing that the neurotransmitter can act independently from the cortical-basal ganglia circuit.

First, Jaffe and Brainard focused on a premotor cortical region called HVC, where they locally infused a drug that mimics the effects of acetylcholine. As a result, males started to sing as if a female were present: songs were faster, louder, and less variable during drug infusion than in control conditions (Figure 1B). Neurons in HVC also started to show the same type of pattern observed during courtship singing towards females – there was, in particular, neural activity increased. Together, these experiments suggest that acetylcholine plays a role in shaping singing behavior in a social context.

Next, they assessed whether differences in behaviour in the presence and absence of a female normally depend on acetylcholine. To this end, Jaffe and Brainard blocked specific acetylcholine receptors, leading to courtship songs in the presence of females becoming lower in pitch, more variable, and altogether more similar to songs performed alone (Figure 1B). Decreasing acetylcholine activity in HVC therefore weakened the vigor of courtship singing, revealing that acetylcholine can drive changes in the brain that energize male performances towards females.

In the brains of songbirds, HVC is connected to the region that controls vocal motor outputs both directly and through a separate circuit that goes through the basal ganglia. Jaffe and Brainard therefore set out to determine which of these pathways acetylcholine acts on to enhance the vigor of the song. They disrupted the circuit that connects the basal ganglia to the vocal output region and showed that, in this context, increased acetylcholine activity in HVC still produced the same enhanced singing behavior (Figure 1C). This demonstrates that acetylcholine can invigorate song performance even without the basal ganglia being involved.

From songbirds to humans, many vertebrates rely on ‘prosodic cues’ such as pitch and tempo to convey motivations and emotions during communication (Pell et al., 2009; Sakata and Vehrencamp, 2012). Knowing how acetylcholine heightens motor performance sheds light on the neural circuits that underlie the production of these cues. Other chemicals, such as dopamine and norepinephrine, also fine-tune the activity of neurons in motor circuits. In the future, understanding how acetylcholine interacts with these neurotransmitters, both in overlapping and independent regions, will be necessary to fully grasp how arousal influences motor behavior.


  1. Book
    1. Sakata JT
    2. Woolley SC
    (2020) Scaling the levels of birdsong analysis
    In: Sakata JT, Woolley SC, Fay RR, Popper AN, editors. The Neuroethology of Birdsong, Springer Handbook of Auditory Research. Springer International Publishing. pp. 1–27.

Article and author information

Author details

  1. Erin M Wall

    Erin M Wall is in the Integrated Program in Neuroscience and the Center for Research on Brain, Language and Music, McGill University, Montreal, Canada

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7451-319X
  2. Sarah C Woolley

    Sarah C Woolley is in the Center for Research on Brain, Language and Music and the Department of Biology, McGill University, Montreal, Canada

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4678-9441

Publication history

  1. Version of Record published: May 19, 2020 (version 1)


© 2020, Wall and Woolley

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,185
    Page views
  • 72
  • 1

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin M Wall
  2. Sarah C Woolley
Motor Performance: Acetylcholine in action
eLife 9:e57515.

Further reading

    1. Neuroscience
    Lindsay Collins, John Francis ... David A McCormick
    Research Article Updated

    Fluctuations in brain and behavioral state are supported by broadly projecting neuromodulatory systems. In this study, we use mesoscale two-photon calcium imaging to examine spontaneous activity of cholinergic and noradrenergic axons in awake mice in order to determine the interaction between arousal/movement state transitions and neuromodulatory activity across the dorsal cortex at distances separated by up to 4 mm. We confirm that GCaMP6s activity within axonal projections of both basal forebrain cholinergic and locus coeruleus noradrenergic neurons track arousal, indexed as pupil diameter, and changes in behavioral engagement, as reflected by bouts of whisker movement and/or locomotion. The broad coordination in activity between even distant axonal segments indicates that both of these systems can communicate, in part, through a global signal, especially in relation to changes in behavioral state. In addition to this broadly coordinated activity, we also find evidence that a subpopulation of both cholinergic and noradrenergic axons may exhibit heterogeneity in activity that appears to be independent of our measures of behavioral state. By monitoring the activity of cholinergic interneurons in the cortex, we found that a subpopulation of these cells also exhibit state-dependent (arousal/movement) activity. These results demonstrate that cholinergic and noradrenergic systems provide a prominent and broadly synchronized signal related to behavioral state, and therefore may contribute to state-dependent cortical activity and excitability.

    1. Neuroscience
    Xiaosha Wang, Bijun Wang, Yanchao Bi
    Research Article Updated

    One signature of the human brain is its ability to derive knowledge from language inputs, in addition to nonlinguistic sensory channels such as vision and touch. How does human language experience modulate the mechanism by which semantic knowledge is stored in the human brain? We investigated this question using a unique human model with varying amounts and qualities of early language exposure: early deaf adults who were born to hearing parents and had reduced early exposure and delayed acquisition of any natural human language (speech or sign), with early deaf adults who acquired sign language from birth as the control group that matches on nonlinguistic sensory experiences. Neural responses in a semantic judgment task with 90 written words that were familiar to both groups were measured using fMRI. The deaf group with reduced early language exposure, compared with the deaf control group, showed reduced semantic sensitivity, in both multivariate pattern (semantic structure encoding) and univariate (abstractness effect) analyses, in the left dorsal anterior temporal lobe (dATL). These results provide positive, causal evidence that language experience drives the neural semantic representation in the dATL, highlighting the roles of language in forming human neural semantic structures beyond nonverbal sensory experiences.