Single cell transcriptomics reveals functionally specialized vascular endothelium in brain

  1. Hyun-Woo Jeong  Is a corresponding author
  2. Rodrigo Diéguez-Hurtado
  3. Hendrik Arf
  4. Jian Song
  5. Hongryeol Park
  6. Kai Kruse
  7. Lydia Sorokin
  8. Ralf H Adams  Is a corresponding author
  1. Max Planck Institute for Molecular Biomedicine, Germany
  2. University of Münster, Germany

Abstract

The blood-brain barrier (BBB) limits the entry of leukocytes and potentially harmful substances from the circulation into the central nervous system (CNS). While BBB defects are a hallmark of many neurological disorders, the cellular heterogeneity at the neurovascular interface and the mechanisms governing neuroinflammation are not fully understood. Through single cell RNA sequencing of non-neuronal cell populations of the murine cerebral cortex during development, adulthood, ageing and neuroinflammation, we identify reactive endothelial venules (REVs), a compartment of specialised post-capillary endothelial cells (ECs) that are characterized by consistent expression of cell adhesion molecules, preferential leukocyte transmigration, association with perivascular macrophage populations, and endothelial activation initiating CNS immune responses. Our results provide novel insights into the heterogeneity of the cerebral vasculature and a useful resource for the molecular alterations associated with neuroinflammation and ageing.

Data availability

Raw data (fastq files) and processed data (gene counts) for single cell RNA-Seq analysis have been deposited in the Gene Expression Omnibus with the primary accession number, GSE133283.

The following data sets were generated

Article and author information

Author details

  1. Hyun-Woo Jeong

    Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    For correspondence
    hyun-woo.jeong@mpi-muenster.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6976-6739
  2. Rodrigo Diéguez-Hurtado

    Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2055-599X
  3. Hendrik Arf

    Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2038-705X
  4. Jian Song

    Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Hongryeol Park

    Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kai Kruse

    Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Lydia Sorokin

    Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7704-7921
  8. Ralf H Adams

    Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    For correspondence
    ralf.adams@mpi-muenster.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3031-7677

Funding

Max-Planck-Gesellschaft

  • Ralf H Adams

Deutsche Forschungsgemeinschaft (cluster of excellence Cells in Motion"")

  • Lydia Sorokin

Deutsche Forschungsgemeinschaft (CRC 1366)

  • Ralf H Adams

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Victoria L Bautch, University of North Carolina, Chapel Hill, United States

Ethics

Animal experimentation: All animal experiments were performed in compliance with the relevant laws and institutional guidelines, approved by local animal ethics committees, and conducted with permissions (84-02.04.2016.A525, 81-02.04.2020.A471 and 84-02.04.2017.A322) granted by the Landesamt für Natur, Umwelt und Verbraucherschutz (LANUV) of North Rhine-Westphalia, Germany. Every effort was made to minimize suffering.

Version history

  1. Received: April 2, 2020
  2. Preprint posted: June 13, 2022 (view preprint)
  3. Accepted: October 4, 2022
  4. Accepted Manuscript published: October 5, 2022 (version 1)
  5. Version of Record published: October 14, 2022 (version 2)

Copyright

© 2022, Jeong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,856
    Page views
  • 1,139
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hyun-Woo Jeong
  2. Rodrigo Diéguez-Hurtado
  3. Hendrik Arf
  4. Jian Song
  5. Hongryeol Park
  6. Kai Kruse
  7. Lydia Sorokin
  8. Ralf H Adams
(2022)
Single cell transcriptomics reveals functionally specialized vascular endothelium in brain
eLife 11:e57520.
https://doi.org/10.7554/eLife.57520

Share this article

https://doi.org/10.7554/eLife.57520

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.