Abstract

Adenosine 5' triphosphate (ATP) is a ubiquitous extracellular signaling messenger. Here, we describe a method for in-vivo imaging of extracellular ATP with high spatiotemporal resolution. We prepared a comprehensive set of cysteine-substitution mutants of ATP-binding protein, Bacillus FoF1-ATP synthase e subunit, labeled with small-molecule fluorophores at the introduced cysteine residue. Screening revealed that the Cy3-labeled glutamine-105 mutant (Q105C-Cy3; designated ATPOS) shows a large fluorescence change in the presence of ATP, with submicromolar affinity, pH-independence, and high selectivity for ATP over ATP metabolites and other nucleotides. To enable in-vivo validation, we introduced BoNT/C-Hc for binding to neuronal plasma membrane and Alexa Fluor 488 for ratiometric measurement. The resulting ATPOS complex binds to neurons in cerebral cortex of living mice, and clearly visualized a concentrically propagating wave of extracellular ATP release in response to electrical stimulation. ATPOS should be useful to probe the extracellular ATP dynamics of diverse biological processes in vivo.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nami Kitajima

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9838-832X
  2. Kenji Takikawa

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiroshi Sekiya

    Department of Physiology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kaname Satoh

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Daisuke Asanuma

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hirokazu Sakamoto

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Shodai Takahashi

    Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenjiro Hanaoka

    Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0797-4038
  9. Yasuteru Urano

    Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Shigeyuki Namiki

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Masamitsu Iino

    Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6426-4206
  12. Kenzo Hirose

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    For correspondence
    kenzoh@m.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8944-6513

Funding

Ministry of Education, Culture, Sports, Science, and Technology (17H04029)

  • Kenzo Hirose

Ministry of Education, Culture, Sports, Science, and Technology (17K08584)

  • Shigeyuki Namiki

Japan Science and Technology Agency (JPMJPR17P1)

  • Daisuke Asanuma

Takeda Science Foundation

  • Nami Kitajima

Ministry of Education, Culture, Sports, Science, and Technology (19K22247)

  • Kenzo Hirose

Ministry of Education, Culture, Sports, Science, and Technology (25221304)

  • Masamitsu Iino

Ministry of Education, Culture, Sports, Science, and Technology (18K14915)

  • Hiroshi Sekiya

Ministry of Education, Culture, Sports, Science, and Technology (17H04764)

  • Daisuke Asanuma

Ministry of Education, Culture, Sports, Science, and Technology (18H04726)

  • Daisuke Asanuma

Ministry of Education, Culture, Sports, Science, and Technology (19K16251)

  • Hirokazu Sakamoto

Ministry of Education, Culture, Sports, Science, and Technology (18H04609)

  • Kenjiro Hanaoka

Ministry of Education, Culture, Sports, Science, and Technology (19H05414)

  • Kenjiro Hanaoka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures used in animal experiments were in accordance with the guidelines established by the Animal Welfare Committee of the University of Tokyo (Medicine-P10-010, Medicine-P15-017 and Medicine-P19-092).

Copyright

© 2020, Kitajima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,621
    views
  • 1,202
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nami Kitajima
  2. Kenji Takikawa
  3. Hiroshi Sekiya
  4. Kaname Satoh
  5. Daisuke Asanuma
  6. Hirokazu Sakamoto
  7. Shodai Takahashi
  8. Kenjiro Hanaoka
  9. Yasuteru Urano
  10. Shigeyuki Namiki
  11. Masamitsu Iino
  12. Kenzo Hirose
(2020)
Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor
eLife 9:e57544.
https://doi.org/10.7554/eLife.57544

Share this article

https://doi.org/10.7554/eLife.57544

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.