Abstract

Adenosine 5' triphosphate (ATP) is a ubiquitous extracellular signaling messenger. Here, we describe a method for in-vivo imaging of extracellular ATP with high spatiotemporal resolution. We prepared a comprehensive set of cysteine-substitution mutants of ATP-binding protein, Bacillus FoF1-ATP synthase e subunit, labeled with small-molecule fluorophores at the introduced cysteine residue. Screening revealed that the Cy3-labeled glutamine-105 mutant (Q105C-Cy3; designated ATPOS) shows a large fluorescence change in the presence of ATP, with submicromolar affinity, pH-independence, and high selectivity for ATP over ATP metabolites and other nucleotides. To enable in-vivo validation, we introduced BoNT/C-Hc for binding to neuronal plasma membrane and Alexa Fluor 488 for ratiometric measurement. The resulting ATPOS complex binds to neurons in cerebral cortex of living mice, and clearly visualized a concentrically propagating wave of extracellular ATP release in response to electrical stimulation. ATPOS should be useful to probe the extracellular ATP dynamics of diverse biological processes in vivo.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nami Kitajima

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9838-832X
  2. Kenji Takikawa

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiroshi Sekiya

    Department of Physiology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kaname Satoh

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Daisuke Asanuma

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hirokazu Sakamoto

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Shodai Takahashi

    Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenjiro Hanaoka

    Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0797-4038
  9. Yasuteru Urano

    Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Shigeyuki Namiki

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Masamitsu Iino

    Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6426-4206
  12. Kenzo Hirose

    Department of Pharmacology, The University of Tokyo, Bunkyo-ku, Japan
    For correspondence
    kenzoh@m.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8944-6513

Funding

Ministry of Education, Culture, Sports, Science, and Technology (17H04029)

  • Kenzo Hirose

Ministry of Education, Culture, Sports, Science, and Technology (17K08584)

  • Shigeyuki Namiki

Japan Science and Technology Agency (JPMJPR17P1)

  • Daisuke Asanuma

Takeda Science Foundation

  • Nami Kitajima

Ministry of Education, Culture, Sports, Science, and Technology (19K22247)

  • Kenzo Hirose

Ministry of Education, Culture, Sports, Science, and Technology (25221304)

  • Masamitsu Iino

Ministry of Education, Culture, Sports, Science, and Technology (18K14915)

  • Hiroshi Sekiya

Ministry of Education, Culture, Sports, Science, and Technology (17H04764)

  • Daisuke Asanuma

Ministry of Education, Culture, Sports, Science, and Technology (18H04726)

  • Daisuke Asanuma

Ministry of Education, Culture, Sports, Science, and Technology (19K16251)

  • Hirokazu Sakamoto

Ministry of Education, Culture, Sports, Science, and Technology (18H04609)

  • Kenjiro Hanaoka

Ministry of Education, Culture, Sports, Science, and Technology (19H05414)

  • Kenjiro Hanaoka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yamuna Krishnan, University of Chicago, United States

Ethics

Animal experimentation: All procedures used in animal experiments were in accordance with the guidelines established by the Animal Welfare Committee of the University of Tokyo (Medicine-P10-010, Medicine-P15-017 and Medicine-P19-092).

Version history

  1. Received: April 3, 2020
  2. Accepted: July 9, 2020
  3. Accepted Manuscript published: July 10, 2020 (version 1)
  4. Version of Record published: August 3, 2020 (version 2)

Copyright

© 2020, Kitajima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,312
    views
  • 1,168
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nami Kitajima
  2. Kenji Takikawa
  3. Hiroshi Sekiya
  4. Kaname Satoh
  5. Daisuke Asanuma
  6. Hirokazu Sakamoto
  7. Shodai Takahashi
  8. Kenjiro Hanaoka
  9. Yasuteru Urano
  10. Shigeyuki Namiki
  11. Masamitsu Iino
  12. Kenzo Hirose
(2020)
Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor
eLife 9:e57544.
https://doi.org/10.7554/eLife.57544

Share this article

https://doi.org/10.7554/eLife.57544

Further reading

    1. Biochemistry and Chemical Biology
    Valentina Kugler, Selina Schwaighofer ... Eduard Stefan
    Research Article

    Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.