Abstract

Myogenesis is an evolutionarily conserved process. Little known, however, is how the morphology of each muscle is determined, such that movements relying upon contraction of many muscles are both precise and coordinated. Each Drosophila larval muscle is a single multinucleated fiber whose morphology reflects expression of distinctive identity Transcription Factors (iTFs). By deleting transcription cis-regulatory modules of one iTF, Collier, we generated viable muscle identity mutants, allowing live imaging and locomotion assays. We show that both selection of muscle attachment sites and muscle/muscle matching is intrinsic to muscle identity and requires transcriptional reprogramming of syncytial nuclei. Live-imaging shows that the staggered muscle pattern involves attraction to tendon cells and heterotypic muscle-muscle adhesion. Unbalance leads to formation of branched muscles, and this correlates with locomotor behavior deficit. Thus, engineering Drosophila muscle identity mutants allows to investigate, in vivo, physiological and mechanical properties of abnormal muscles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Alexandre Carayon

    CBI UMR 5547, Université de Toulouse, French National Centre for Scientific Research, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Laetitia Bataillé

    CBI UMR 5547, Université de Toulouse, French National Centre for Scientific Research, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Gaëlle Lebreton

    CBI UMR 5547, Université de Toulouse, French National Centre for Scientific Research, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence Dubois

    UMR 5547, Univeristé de Toulouse, French National Centre for Scientific Research, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Aurore Pelletier

    CBI UMR 5547, Université de Toulouse, French National Centre for Scientific Research, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Yannick Carrier

    CBI UMR 5547, Université de Toulouse, French National Centre for Scientific Research, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Antoine Wystrach

    CBI CRCA, French National Centre for Scientific Research, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Alain Vincent

    Centre de Biologie du Développement, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2769-7501
  9. Jean-Louis Frendo

    CBI UMR 5547, Université de Toulouse, French National Centre for Scientific Research, Toulouse, France
    For correspondence
    jean-louis.frendo@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0118-5556

Funding

Centre National de la Recherche Scientifique

  • Alexandre Carayon
  • Laetitia Bataillé
  • Gaëlle Lebreton
  • Laurence Dubois
  • Aurore Pelletier
  • Yannick Carrier
  • Antoine Wystrach
  • Alain Vincent
  • Jean-Louis Frendo

Centre de Biologie Integrative de Toulouse (AOCBI2018)

  • Jean-Louis Frendo

AFM-Téléthon (Research grant 21887)

  • Alain Vincent

Agence Nationale de la Recherche (13-BSVE2-0010-01)

  • Alain Vincent

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Carayon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,406
    views
  • 162
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre Carayon
  2. Laetitia Bataillé
  3. Gaëlle Lebreton
  4. Laurence Dubois
  5. Aurore Pelletier
  6. Yannick Carrier
  7. Antoine Wystrach
  8. Alain Vincent
  9. Jean-Louis Frendo
(2020)
Intrinsic control of muscle attachment sites matching
eLife 9:e57547.
https://doi.org/10.7554/eLife.57547

Share this article

https://doi.org/10.7554/eLife.57547

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.