Rapid stimulus-driven modulation of slow ocular position drifts

  1. Tatiana Malevich
  2. Antimo Buonocore
  3. Ziad M Hafed  Is a corresponding author
  1. Tuebingen University, Germany

Abstract

The eyes are never still during maintained gaze fixation. When microsaccades are not occurring, ocular position exhibits continuous slow changes, often referred to as drifts. Unlike microsaccades, drifts remain to be viewed as largely random eye movements. Here we found that ocular position drifts can, instead, be very systematically stimulus-driven, and with very short latencies. We used highly precise eye tracking in three well trained macaque monkeys and found that even fleeting (~8 ms duration) stimulus presentations can robustly trigger transient and stimulus-specific modulations of ocular position drifts, and with only approximately 60 ms latency. Such drift responses are binocular, and they are most effectively elicited with large stimuli of low spatial frequency. Intriguingly, the drift responses exhibit some image pattern selectivity, and they are not explained by convergence responses, pupil constrictions, head movements, or starting eye positions. Ocular position drifts have very rapid access to exogenous visual information.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data for figures will be uploaded upon acceptance.

Article and author information

Author details

  1. Tatiana Malevich

    Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Antimo Buonocore

    Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3917-510X
  3. Ziad M Hafed

    Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany
    For correspondence
    ziad.m.hafed@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9968-119X

Funding

Deutsche Forschungsgemeinschaft (HA6749/2-1)

  • Antimo Buonocore
  • Ziad M Hafed

Deutsche Forschungsgemeinschaft (EXC307)

  • Tatiana Malevich
  • Antimo Buonocore
  • Ziad M Hafed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Emilio Salinas, Wake Forest School of Medicine, United States

Ethics

Animal experimentation: We tracked eye movements in 3 male rhesus macaque monkeys trained on behavioral eye movement tasks under head-stabilized conditions. The experiments were part of a larger neurophysiological investigation in the laboratory. All procedures and behavioral paradigms were approved (CIN3/13 and CIN4/19G) by ethics committees at the Regierungspräsidium Tübingen, and they complied with European Union directives on animal research.

Version history

  1. Received: April 5, 2020
  2. Accepted: August 5, 2020
  3. Accepted Manuscript published: August 6, 2020 (version 1)
  4. Version of Record published: August 21, 2020 (version 2)

Copyright

© 2020, Malevich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,296
    views
  • 184
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tatiana Malevich
  2. Antimo Buonocore
  3. Ziad M Hafed
(2020)
Rapid stimulus-driven modulation of slow ocular position drifts
eLife 9:e57595.
https://doi.org/10.7554/eLife.57595

Share this article

https://doi.org/10.7554/eLife.57595

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.