Accurate and versatile 3D segmentation of plant tissues at cellular resolution

Abstract

Quantitative analysis of plant and animal morphogenesis requires accurate segmentation of individual cells in volumetric images of growing organs. In the last years, deep learning has provided robust automated algorithms that approach human performance, with applications to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for volumetric segmentation of plant tissues into cells. PlantSeg employs a convolutional neural network to predict cell boundaries and graph partitioning to segment cells based on the neural network predictions. PlantSeg was trained on 1xed and live plant organs imaged with confocal and light sheet microscopes. PlantSeg delivers accurate results and generalizes well across different tissues, scales, acquisition settings even on non plant samples. We present results of PlantSeg applications in diverse developmental contexts. PlantSeg is free and open-source, with both a command line and a user-friendly graphical interface (https://github.com/hci-unihd/plant-seg).

Data availability

All data used in this study have been deposited in Open Science Framework: https://osf.io/uzq3w/Additionally Arabidopsis 3D Digital Tissue Atlas is available under https://osf.io/fzr56/

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Adrian Wolny

    Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lorenzo Cerrone

    Heidelberg Collaboratory for Image Processing, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Athul Vijayan

    School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachele Tofanelli

    School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5196-1122
  5. Amaya Vilches Barro

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marion Louveaux

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Wenzl

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Sören Strauss

    Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. David Wilson-Sánchez

    Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Rena Lymbouridou

    Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Susanne Steigleder

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Constantin Pape

    Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Alberto Bailoni

    Heidelberg Collaboratory for Image Processing, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Salva Duran-Nebreda

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. George Bassel

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Jan U Lohmann

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3667-187X
  17. Miltos Tsiantis

    Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Fred Hamprecht

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  19. Kay Schneitz

    School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6688-0539
  20. Alexis Maizel

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  21. Anna Kreshuk

    Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
    For correspondence
    anna.kreshuk@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1334-6388

Funding

Deutsche Forschungsgemeinschaft (FOR2581)

  • Jan U Lohmann
  • Miltos Tsiantis
  • Fred Hamprecht
  • Kay Schneitz
  • Alexis Maizel
  • Anna Kreshuk

Leverhulme Trust (RPG-2016-049)

  • George Bassel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Wolny et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,097
    views
  • 1,420
    downloads
  • 171
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adrian Wolny
  2. Lorenzo Cerrone
  3. Athul Vijayan
  4. Rachele Tofanelli
  5. Amaya Vilches Barro
  6. Marion Louveaux
  7. Christian Wenzl
  8. Sören Strauss
  9. David Wilson-Sánchez
  10. Rena Lymbouridou
  11. Susanne Steigleder
  12. Constantin Pape
  13. Alberto Bailoni
  14. Salva Duran-Nebreda
  15. George Bassel
  16. Jan U Lohmann
  17. Miltos Tsiantis
  18. Fred Hamprecht
  19. Kay Schneitz
  20. Alexis Maizel
  21. Anna Kreshuk
(2020)
Accurate and versatile 3D segmentation of plant tissues at cellular resolution
eLife 9:e57613.
https://doi.org/10.7554/eLife.57613

Share this article

https://doi.org/10.7554/eLife.57613

Further reading

    1. Plant Biology
    Zongju Yang, Tianqi Bai ... Chen Chen
    Research Article

    As a master regulator of seed development, Leafy Cotyledon 1 (LEC1) promotes chlorophyll (Chl) biosynthesis in Arabidopsis, but the mechanism underlying this remains poorly understood. Here, we found that loss of function of OsNF-YB7, a LEC1 homolog of rice, leads to chlorophyllous embryo, indicating that OsNF-YB7 plays an opposite role in Chl biosynthesis in rice compared with that in Arabidopsis. OsNF-YB7 regulates the expression of a group of genes responsible for Chl biosynthesis and photosynthesis by directly binding to their promoters. In addition, OsNF-YB7 interacts with Golden 2-Like 1 (OsGLK1) to inhibit the transactivation activity of OsGLK1, a key regulator of Chl biosynthesis. Moreover, OsNF-YB7 can directly repress OsGLK1 expression by recognizing its promoter in vivo, indicating the involvement of OsNF-YB7 in multiple regulatory layers of Chl biosynthesis in rice embryo. We propose that OsNF-YB7 functions as a transcriptional repressor to regulate Chl biosynthesis in rice embryo.

    1. Plant Biology
    Yuanyuan Bu, Xingye Dong ... Shenkui Liu
    Research Article Updated

    Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.