A versatile Oblique Plane Microscope for large-scale and high-resolution imaging of subcellular dynamics

  1. Etai Sapoznik
  2. Bo-Jui Chang
  3. Jaewon Huh
  4. Robert J Ju
  5. Evgenia V Azarova
  6. Theresa Pohlkamp
  7. Erik S Welf
  8. David Broadbent
  9. Alexandre F Carisey
  10. Samantha J Stehbens
  11. Kyung-Min Lee
  12. Arnoldo Marin
  13. Ariella B Hanker
  14. Jens C Schmidt
  15. Carlos L Arteaga
  16. Bin Yang
  17. Yoshihiko Kobayashi
  18. Purushothama Rao Tata
  19. Rory Kruithoff
  20. Konstantin Dubrovinski
  21. Doug P Shepherd
  22. Alfred Millet-Sikking
  23. Andrew G York
  24. Kevin M Dean  Is a corresponding author
  25. Reto P Fiolka  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. University of Queensland, Australia
  3. Michigan State University, United States
  4. Baylor College of Medicine and Texas Children's Hospital, United States
  5. Chan Zuckerberg Biohub, United States
  6. Duke University, United States
  7. University of Arizona, United States
  8. Calico Life Sciences LLC, United States

Abstract

We present an Oblique Plane Microscope that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of Lattice Light-Sheet Microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.

Data availability

Manuscript data is available on Zenodo, under the doi:10.5281/zenodo.4266823.

The following data sets were generated

Article and author information

Author details

  1. Etai Sapoznik

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8472-0299
  2. Bo-Jui Chang

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Jaewon Huh

    Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Robert J Ju

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
    Competing interests
    No competing interests declared.
  5. Evgenia V Azarova

    Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Theresa Pohlkamp

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3923-1917
  7. Erik S Welf

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  8. David Broadbent

    nstitute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  9. Alexandre F Carisey

    William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1326-2205
  10. Samantha J Stehbens

    Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
    Competing interests
    No competing interests declared.
  11. Kyung-Min Lee

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  12. Arnoldo Marin

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  13. Ariella B Hanker

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  14. Jens C Schmidt

    OBGYN, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9061-7853
  15. Carlos L Arteaga

    Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Carlos L Arteaga, C.L.A. serves in an advisory role for Novartis, which has an investment interest in alpelisib..
  16. Bin Yang

    Chan Zuckerberg Biohub, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  17. Yoshihiko Kobayashi

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7031-1478
  18. Purushothama Rao Tata

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4837-0337
  19. Rory Kruithoff

    Department of Physics and the Center for Biological Physics, University of Arizona, Tempe, United States
    Competing interests
    No competing interests declared.
  20. Konstantin Dubrovinski

    Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  21. Doug P Shepherd

    Department of Physics and the Center for Biological Physics, University of Arizona, Tempe, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9087-0832
  22. Alfred Millet-Sikking

    Calico, Calico Life Sciences LLC, South San Franscisco, United States
    Competing interests
    No competing interests declared.
  23. Andrew G York

    Calico, Calico Life Sciences LLC, South San Franscisco, United States
    Competing interests
    Andrew G York, K.M.D. has an investment interest in Discovery Imaging Systems, LLC.
  24. Kevin M Dean

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Kevin.Dean@UTsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0839-2320
  25. Reto P Fiolka

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Reto.Fiolka@UTsouthwestern.edu
    Competing interests
    Reto P Fiolka, The author has an investment interest in Discovery Imaging Systems, LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4636-5000

Funding

Cancer Prevention and Research Institute of Texas (RR160057)

  • Reto P Fiolka

National Institutes of Health (5P30CA142543)

  • Kevin M Dean

Damon Runyon Cancer Research Foundation (DFS-24-17)

  • Jens C Schmidt

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Purushothama Rao Tata

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Doug P Shepherd

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Yoshihiko Kobayashi

ARC (FT190100516)

  • Samantha J Stehbens

Rebecca Cooper Medical Foundation (PG2018168)

  • Samantha J Stehbens

University of Queensland Early Career Award (RM2018002613)

  • Samantha J Stehbens

Company of Biologists (JCSTF1903138)

  • Robert J Ju

Robert A. Welch Foundation (I-1950-20180324)

  • Konstantin Dubrovinski

National Institutes of Health (R00 GM120386)

  • Jens C Schmidt

National Institutes of Health (R01GM110066)

  • Konstantin Dubrovinski

National Institutes of Health (R01HL068702)

  • Doug P Shepherd

National Institutes of Health (R33CA235254)

  • Reto P Fiolka

National Institutes of Health (R35GM133522)

  • Reto P Fiolka

National Institutes of Health (K25 CA204526)

  • Erik S Welf

National Institutes of Health (P30 CA142543)

  • Carlos L Arteaga

National Institutes of Health (1R01MH120131-01A1)

  • Kevin M Dean

National Institutes of Health (1R34NS121873)

  • Kevin M Dean

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Sapoznik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 32,138
    views
  • 1,520
    downloads
  • 141
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Etai Sapoznik
  2. Bo-Jui Chang
  3. Jaewon Huh
  4. Robert J Ju
  5. Evgenia V Azarova
  6. Theresa Pohlkamp
  7. Erik S Welf
  8. David Broadbent
  9. Alexandre F Carisey
  10. Samantha J Stehbens
  11. Kyung-Min Lee
  12. Arnoldo Marin
  13. Ariella B Hanker
  14. Jens C Schmidt
  15. Carlos L Arteaga
  16. Bin Yang
  17. Yoshihiko Kobayashi
  18. Purushothama Rao Tata
  19. Rory Kruithoff
  20. Konstantin Dubrovinski
  21. Doug P Shepherd
  22. Alfred Millet-Sikking
  23. Andrew G York
  24. Kevin M Dean
  25. Reto P Fiolka
(2020)
A versatile Oblique Plane Microscope for large-scale and high-resolution imaging of subcellular dynamics
eLife 9:e57681.
https://doi.org/10.7554/eLife.57681

Share this article

https://doi.org/10.7554/eLife.57681

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.