A versatile Oblique Plane Microscope for large-scale and high-resolution imaging of subcellular dynamics

  1. Etai Sapoznik
  2. Bo-Jui Chang
  3. Jaewon Huh
  4. Robert J Ju
  5. Evgenia V Azarova
  6. Theresa Pohlkamp
  7. Erik S Welf
  8. David Broadbent
  9. Alexandre F Carisey
  10. Samantha J Stehbens
  11. Kyung-Min Lee
  12. Arnoldo Marin
  13. Ariella B Hanker
  14. Jens C Schmidt
  15. Carlos L Arteaga
  16. Bin Yang
  17. Yoshihiko Kobayashi
  18. Purushothama Rao Tata
  19. Rory Kruithoff
  20. Konstantin Dubrovinski
  21. Doug P Shepherd
  22. Alfred Millet-Sikking
  23. Andrew G York
  24. Kevin M Dean  Is a corresponding author
  25. Reto P Fiolka  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. University of Queensland, Australia
  3. Michigan State University, United States
  4. Baylor College of Medicine and Texas Children's Hospital, United States
  5. Chan Zuckerberg Biohub, United States
  6. Duke University, United States
  7. Arizona State University, United States
  8. Calico Life Sciences LLC, United States

Abstract

We present an Oblique Plane Microscope that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of Lattice Light-Sheet Microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.

Data availability

Manuscript data is available on Zenodo, under the doi:10.5281/zenodo.4266823.

The following data sets were generated

Article and author information

Author details

  1. Etai Sapoznik

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8472-0299
  2. Bo-Jui Chang

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Jaewon Huh

    Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Robert J Ju

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
    Competing interests
    No competing interests declared.
  5. Evgenia V Azarova

    Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Theresa Pohlkamp

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3923-1917
  7. Erik S Welf

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  8. David Broadbent

    nstitute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  9. Alexandre F Carisey

    William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1326-2205
  10. Samantha J Stehbens

    Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
    Competing interests
    No competing interests declared.
  11. Kyung-Min Lee

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  12. Arnoldo Marin

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  13. Ariella B Hanker

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  14. Jens C Schmidt

    OBGYN, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9061-7853
  15. Carlos L Arteaga

    Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Carlos L Arteaga, This author serves in an advisory role for Novartis, which has an investment interest in alpelisib..
  16. Bin Yang

    Chan Zuckerberg Biohub, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  17. Yoshihiko Kobayashi

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7031-1478
  18. Purushothama Rao Tata

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4837-0337
  19. Rory Kruithoff

    Department of Physics and the Center for Biological Physics, Arizona State University, Tempe, United States
    Competing interests
    No competing interests declared.
  20. Konstantin Dubrovinski

    Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  21. Doug P Shepherd

    Department of Physics and the Center for Biological Physics, Arizona State University, Tempe, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9087-0832
  22. Alfred Millet-Sikking

    Calico Life Sciences LLC, South San Franscisco, United States
    Competing interests
    No competing interests declared.
  23. Andrew G York

    Calico Life Sciences LLC, South San Franscisco, United States
    Competing interests
    No competing interests declared.
  24. Kevin M Dean

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Kevin.Dean@UTsouthwestern.edu
    Competing interests
    Kevin M Dean, This author has an investment interest in Discovery Imaging Systems, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0839-2320
  25. Reto P Fiolka

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Reto.Fiolka@UTsouthwestern.edu
    Competing interests
    Reto P Fiolka, The author has an investment interest in Discovery Imaging Systems, LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4636-5000

Funding

Cancer Prevention and Research Institute of Texas (RR160057)

  • Reto P Fiolka

National Institutes of Health (5P30CA142543)

  • Kevin M Dean

Damon Runyon Cancer Research Foundation (DFS-24-17)

  • Jens C Schmidt

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Purushothama Rao Tata

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Doug P Shepherd

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Yoshihiko Kobayashi

ARC (FT190100516)

  • Samantha J Stehbens

Rebecca Cooper Medical Foundation (PG2018168)

  • Samantha J Stehbens

University of Queensland Early Career Award (RM2018002613)

  • Samantha J Stehbens

Company of Biologists (JCSTF1903138)

  • Robert J Ju

Robert A. Welch Foundation (I-1950-20180324)

  • Konstantin Dubrovinski

National Institutes of Health (R00 GM120386)

  • Jens C Schmidt

National Institutes of Health (R01GM110066)

  • Konstantin Dubrovinski

Human Frontiers Science Program Organization (LT000911/2018C)

  • Jaewon Huh

National Institutes of Health (R01HL068702)

  • Doug P Shepherd

National Institutes of Health (R33CA235254)

  • Reto P Fiolka

National Institutes of Health (R35GM133522)

  • Reto P Fiolka

National Institutes of Health (K25 CA204526)

  • Erik S Welf

National Institutes of Health (P30 CA142543)

  • Carlos L Arteaga

National Institutes of Health (1R01MH120131-01A1)

  • Kevin M Dean

National Institutes of Health (1R34NS121873)

  • Kevin M Dean

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Sapoznik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 31,178
    views
  • 1,453
    downloads
  • 135
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Etai Sapoznik
  2. Bo-Jui Chang
  3. Jaewon Huh
  4. Robert J Ju
  5. Evgenia V Azarova
  6. Theresa Pohlkamp
  7. Erik S Welf
  8. David Broadbent
  9. Alexandre F Carisey
  10. Samantha J Stehbens
  11. Kyung-Min Lee
  12. Arnoldo Marin
  13. Ariella B Hanker
  14. Jens C Schmidt
  15. Carlos L Arteaga
  16. Bin Yang
  17. Yoshihiko Kobayashi
  18. Purushothama Rao Tata
  19. Rory Kruithoff
  20. Konstantin Dubrovinski
  21. Doug P Shepherd
  22. Alfred Millet-Sikking
  23. Andrew G York
  24. Kevin M Dean
  25. Reto P Fiolka
(2020)
A versatile Oblique Plane Microscope for large-scale and high-resolution imaging of subcellular dynamics
eLife 9:e57681.
https://doi.org/10.7554/eLife.57681

Share this article

https://doi.org/10.7554/eLife.57681

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.