A versatile Oblique Plane Microscope for large-scale and high-resolution imaging of subcellular dynamics

  1. Etai Sapoznik
  2. Bo-Jui Chang
  3. Jaewon Huh
  4. Robert J Ju
  5. Evgenia V Azarova
  6. Theresa Pohlkamp
  7. Erik S Welf
  8. David Broadbent
  9. Alexandre F Carisey
  10. Samantha J Stehbens
  11. Kyung-Min Lee
  12. Arnoldo Marin
  13. Ariella B Hanker
  14. Jens C Schmidt
  15. Carlos L Arteaga
  16. Bin Yang
  17. Yoshihiko Kobayashi
  18. Purushothama Rao Tata
  19. Rory Kruithoff
  20. Konstantin Dubrovinski
  21. Doug P Shepherd
  22. Alfred Millet-Sikking
  23. Andrew G York
  24. Kevin M Dean  Is a corresponding author
  25. Reto P Fiolka  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. University of Queensland, Australia
  3. Michigan State University, United States
  4. Baylor College of Medicine and Texas Children's Hospital, United States
  5. Chan Zuckerberg Biohub, United States
  6. Duke University, United States
  7. Arizona State University, United States
  8. Calico Life Sciences LLC, United States

Abstract

We present an Oblique Plane Microscope that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of Lattice Light-Sheet Microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.

Data availability

Manuscript data is available on Zenodo, under the doi:10.5281/zenodo.4266823.

The following data sets were generated

Article and author information

Author details

  1. Etai Sapoznik

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8472-0299
  2. Bo-Jui Chang

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Jaewon Huh

    Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Robert J Ju

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
    Competing interests
    No competing interests declared.
  5. Evgenia V Azarova

    Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Theresa Pohlkamp

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3923-1917
  7. Erik S Welf

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  8. David Broadbent

    nstitute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  9. Alexandre F Carisey

    William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1326-2205
  10. Samantha J Stehbens

    Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
    Competing interests
    No competing interests declared.
  11. Kyung-Min Lee

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  12. Arnoldo Marin

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  13. Ariella B Hanker

    Harold C Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  14. Jens C Schmidt

    OBGYN, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9061-7853
  15. Carlos L Arteaga

    Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Carlos L Arteaga, This author serves in an advisory role for Novartis, which has an investment interest in alpelisib..
  16. Bin Yang

    Chan Zuckerberg Biohub, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  17. Yoshihiko Kobayashi

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7031-1478
  18. Purushothama Rao Tata

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4837-0337
  19. Rory Kruithoff

    Department of Physics and the Center for Biological Physics, Arizona State University, Tempe, United States
    Competing interests
    No competing interests declared.
  20. Konstantin Dubrovinski

    Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  21. Doug P Shepherd

    Department of Physics and the Center for Biological Physics, Arizona State University, Tempe, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9087-0832
  22. Alfred Millet-Sikking

    Calico Life Sciences LLC, South San Franscisco, United States
    Competing interests
    No competing interests declared.
  23. Andrew G York

    Calico Life Sciences LLC, South San Franscisco, United States
    Competing interests
    No competing interests declared.
  24. Kevin M Dean

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Kevin.Dean@UTsouthwestern.edu
    Competing interests
    Kevin M Dean, This author has an investment interest in Discovery Imaging Systems, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0839-2320
  25. Reto P Fiolka

    Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Reto.Fiolka@UTsouthwestern.edu
    Competing interests
    Reto P Fiolka, The author has an investment interest in Discovery Imaging Systems, LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4636-5000

Funding

Cancer Prevention and Research Institute of Texas (RR160057)

  • Reto P Fiolka

National Institutes of Health (5P30CA142543)

  • Kevin M Dean

Damon Runyon Cancer Research Foundation (DFS-24-17)

  • Jens C Schmidt

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Purushothama Rao Tata

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Doug P Shepherd

Chan Zuckerberg Initiative (HCA3-0000000196)

  • Yoshihiko Kobayashi

ARC (FT190100516)

  • Samantha J Stehbens

Rebecca Cooper Medical Foundation (PG2018168)

  • Samantha J Stehbens

University of Queensland Early Career Award (RM2018002613)

  • Samantha J Stehbens

Company of Biologists (JCSTF1903138)

  • Robert J Ju

Robert A. Welch Foundation (I-1950-20180324)

  • Konstantin Dubrovinski

National Institutes of Health (R00 GM120386)

  • Jens C Schmidt

National Institutes of Health (R01GM110066)

  • Konstantin Dubrovinski

Human Frontiers Science Program Organization (LT000911/2018C)

  • Jaewon Huh

National Institutes of Health (R01HL068702)

  • Doug P Shepherd

National Institutes of Health (R33CA235254)

  • Reto P Fiolka

National Institutes of Health (R35GM133522)

  • Reto P Fiolka

National Institutes of Health (K25 CA204526)

  • Erik S Welf

National Institutes of Health (P30 CA142543)

  • Carlos L Arteaga

National Institutes of Health (1R01MH120131-01A1)

  • Kevin M Dean

National Institutes of Health (1R34NS121873)

  • Kevin M Dean

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melike Lakadamyali, University of Pennsylvania, United States

Version history

  1. Received: April 8, 2020
  2. Accepted: November 9, 2020
  3. Accepted Manuscript published: November 12, 2020 (version 1)
  4. Accepted Manuscript updated: November 16, 2020 (version 2)
  5. Version of Record published: December 1, 2020 (version 3)
  6. Version of Record updated: December 7, 2020 (version 4)
  7. Version of Record updated: February 1, 2021 (version 5)

Copyright

© 2020, Sapoznik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 30,219
    views
  • 1,375
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Etai Sapoznik
  2. Bo-Jui Chang
  3. Jaewon Huh
  4. Robert J Ju
  5. Evgenia V Azarova
  6. Theresa Pohlkamp
  7. Erik S Welf
  8. David Broadbent
  9. Alexandre F Carisey
  10. Samantha J Stehbens
  11. Kyung-Min Lee
  12. Arnoldo Marin
  13. Ariella B Hanker
  14. Jens C Schmidt
  15. Carlos L Arteaga
  16. Bin Yang
  17. Yoshihiko Kobayashi
  18. Purushothama Rao Tata
  19. Rory Kruithoff
  20. Konstantin Dubrovinski
  21. Doug P Shepherd
  22. Alfred Millet-Sikking
  23. Andrew G York
  24. Kevin M Dean
  25. Reto P Fiolka
(2020)
A versatile Oblique Plane Microscope for large-scale and high-resolution imaging of subcellular dynamics
eLife 9:e57681.
https://doi.org/10.7554/eLife.57681

Share this article

https://doi.org/10.7554/eLife.57681

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.