Bimodal function of chromatin remodeler Hmga1 in neural crest induction and Wnt-dependent emigration

Abstract

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally-controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.

Data availability

Sequencing data files have been deposited on NCBI under the accession number PRJNA624258.

The following data sets were generated

Article and author information

Author details

  1. Shashank Gandhi

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    shashank.gandhi@caltech.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4081-4338
  2. Erica J Hutchins

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4316-0333
  3. Krystyna Maruszko

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  4. Jong H Park

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  5. Matthew Thomson

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Marianne E Bronner

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    mbronner@caltech.edu
    Competing interests
    Marianne E Bronner, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4274-1862

Funding

National Institutes of Health (R01DE027568)

  • Marianne E Bronner

National Institutes of Health (R01HL14058)

  • Marianne E Bronner

American Heart Association (18PRE34050063)

  • Shashank Gandhi

National Institutes of Health (K99DE028592)

  • Erica J Hutchins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lukas Sommer, University of Zurich, Switzerland

Version history

  1. Received: April 24, 2020
  2. Accepted: September 23, 2020
  3. Accepted Manuscript published: September 23, 2020 (version 1)
  4. Version of Record published: October 27, 2020 (version 2)

Copyright

© 2020, Gandhi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,672
    Page views
  • 358
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shashank Gandhi
  2. Erica J Hutchins
  3. Krystyna Maruszko
  4. Jong H Park
  5. Matthew Thomson
  6. Marianne E Bronner
(2020)
Bimodal function of chromatin remodeler Hmga1 in neural crest induction and Wnt-dependent emigration
eLife 9:e57779.
https://doi.org/10.7554/eLife.57779

Share this article

https://doi.org/10.7554/eLife.57779

Further reading

    1. Developmental Biology
    Chhavi Sood, Md Ausrafuggaman Nahid ... Sarah E Siegrist
    Research Article

    Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.

    1. Developmental Biology
    Nicolas G Brukman, Clari Valansi, Benjamin Podbilewicz
    Research Article Updated

    The fusion of mammalian gametes requires the interaction between IZUMO1 on the sperm and JUNO on the oocyte. We have recently shown that ectopic expression of mouse IZUMO1 induces cell-cell fusion and that sperm can fuse to fibroblasts expressing JUNO. Here, we found that the incubation of mouse sperm with hamster fibroblasts or human epithelial cells in culture induces the fusion between these somatic cells and the formation of syncytia, a pattern previously observed with some animal viruses. This sperm-induced cell-cell fusion requires a species-matching JUNO on both fusing cells, can be blocked by an antibody against IZUMO1, and does not rely on the synthesis of new proteins. The fusion is dependent on the sperm’s fusogenic capacity, making this a reliable, fast, and simple method for predicting sperm function during the diagnosis of male infertility.