A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency

  1. Dana M Talsness  Is a corresponding author
  2. Katie G Owings
  3. Emily Coelho
  4. Gaelle Mercenne
  5. John M Pleinis
  6. Raghavendran Partha
  7. Kevin A Hope
  8. Aamir R Zuberi
  9. Nathan L Clark
  10. Cathleen M Lutz
  11. Aylin R Rodan
  12. Clement Y Chow  Is a corresponding author
  1. University of Utah School of Medicine, United States
  2. University of Utah, United States
  3. University of Pittsburgh, United States
  4. The Jackson Laboratory, United States

Abstract

N-Glycanase 1 (NGLY1) is a cytoplasmic deglycosylating enzyme. Loss-of-function mutations in the NGLY1 gene cause NGLY1 deficiency, which is characterized by developmental delay, seizures, and a lack of sweat and tears. To model the phenotypic variability observed among patients, we crossed a Drosophila model of NGLY1 deficiency onto a panel of genetically diverse strains. The resulting progeny showed a phenotypic spectrum from 0-100% lethality. Association analysis on the lethality phenotype, as well as an evolutionary rate covariation analysis, generated lists of modifying genes, providing insight into NGLY1 function and disease. The top association hit was Ncc69 (human NKCC1/2), a conserved ion transporter. Analyses in NGLY1 -/- mouse cells demonstrated that NKCC1 has an altered average molecular weight and reduced function. The misregulation of this ion transporter may explain the observed defects in secretory epithelium function in NGLY1 deficiency patients.

Data availability

All data generated by this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Dana M Talsness

    Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    dana.talsness@genetics.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7823-1616
  2. Katie G Owings

    Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emily Coelho

    Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaelle Mercenne

    Department of Internal Medicine, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John M Pleinis

    Department of Internal Medicine, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Raghavendran Partha

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7900-4375
  7. Kevin A Hope

    Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Aamir R Zuberi

    The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nathan L Clark

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Cathleen M Lutz

    The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Aylin R Rodan

    Department of Internal Medicine, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9202-2378
  12. Clement Y Chow

    Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    cchow@genetics.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3104-7923

Funding

National Institute of General Medical Sciences (R35GM124780)

  • Clement Y Chow

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK110358)

  • Aylin R Rodan

National Human Genome Research Institute (R01 HG009299)

  • Nathan L Clark

Glenn Foundation for Medical Research (Glenn Award)

  • Clement Y Chow

National Human Genome Research Institute (T32 HG008962)

  • Dana M Talsness
  • Kevin A Hope

Might family (Bertrand T Might Fellowship)

  • Dana M Talsness

National Institute of General Medical Sciences (T32 GM007464)

  • Katie G Owings

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Publication history

  1. Received: April 14, 2020
  2. Accepted: December 12, 2020
  3. Accepted Manuscript published: December 14, 2020 (version 1)
  4. Accepted Manuscript updated: December 17, 2020 (version 2)
  5. Version of Record published: December 23, 2020 (version 3)

Copyright

© 2020, Talsness et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,959
    Page views
  • 180
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dana M Talsness
  2. Katie G Owings
  3. Emily Coelho
  4. Gaelle Mercenne
  5. John M Pleinis
  6. Raghavendran Partha
  7. Kevin A Hope
  8. Aamir R Zuberi
  9. Nathan L Clark
  10. Cathleen M Lutz
  11. Aylin R Rodan
  12. Clement Y Chow
(2020)
A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency
eLife 9:e57831.
https://doi.org/10.7554/eLife.57831

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Tsuyoshi Imasaki et al.
    Research Article

    Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules.

    1. Cell Biology
    2. Developmental Biology
    Katelyn J Hoff et al.
    Research Article Updated

    Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels.