Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells

Abstract

HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24h revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96h in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, i.e. Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, e.g. expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.

Data availability

Sequencing data (RNA seq) have been deposited in GEO, under the accession number GSE149749.

The following data sets were generated

Article and author information

Author details

  1. Pradyot Bhattacharya

    Department of Biomedical and clinical sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Rada Ellegård

    Department of Biomedical and clinical sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohammad Khalid

    Department of Biomedical and clinical sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Cecilia Svanberg

    Department of Biomedical and clinical sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Melissa Govender

    Department of Biomedical and clinical sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Åsa V keita

    Dep Biosciences and Clinical Sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Johan D Söderholm

    Dep Biosciences and Clinical Sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Pär Myrelid

    Dep Biosciences and Clinical Sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Esaki M Shankar

    Dept. of Life Sciences, Central University of Tamil Nadu Neelakudi, Thiruvarur, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Sofia Nyström

    Department of Biomedical and clinical sciences, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Marie Larsson

    Department of Biomedical and clinical sciences, Linköping University, Linköping, Sweden
    For correspondence
    marie.larsson@liu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4524-0177

Funding

Vetenskapsrådet (Project grant)

  • Marie Larsson

Läkare emot AIDS (Project grant)

  • Marie Larsson

Forsknings-ALF (Project grant)

  • Marie Larsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the Linköping University Ethical Review Board (Ethical permit EPN M206-06). The subjects were informed about the study at the clinic and verbal consents were obtained and documented from all participating subjects, as approved by the Linköping University Ethical Review Board. The study included both male and female adult subjects who were 18 years or older.

Copyright

© 2020, Bhattacharya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,180
    views
  • 136
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pradyot Bhattacharya
  2. Rada Ellegård
  3. Mohammad Khalid
  4. Cecilia Svanberg
  5. Melissa Govender
  6. Åsa V keita
  7. Johan D Söderholm
  8. Pär Myrelid
  9. Esaki M Shankar
  10. Sofia Nyström
  11. Marie Larsson
(2020)
Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells
eLife 9:e57869.
https://doi.org/10.7554/eLife.57869

Share this article

https://doi.org/10.7554/eLife.57869

Further reading

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.