A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans

  1. Jennifer D Cohen
  2. Alessandro P Sparacio
  3. Alexandra C Belfi
  4. Rachel Forman-Rubinsky
  5. David H Hall
  6. Hannah Maul-Newby
  7. Alison R Frand
  8. Meera V Sundaram  Is a corresponding author
  1. University of Pennsylvania Perelman School of Medicine, United States
  2. Albert Einstein College of Medicine, United States
  3. David Geffen School of Medicine, University of California, Los Angeles, United States
  4. University of Pennsylvania, United States

Abstract

Biological tubes must develop and maintain their proper diameter in order to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The C. elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1˚) and Notch-dependent (2˚) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for graphs in Figures 8, 8-1,10, 11.

Article and author information

Author details

  1. Jennifer D Cohen

    Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alessandro P Sparacio

    Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra C Belfi

    Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachel Forman-Rubinsky

    Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David H Hall

    Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8459-9820
  6. Hannah Maul-Newby

    Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2187-7891
  7. Alison R Frand

    Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5972-989X
  8. Meera V Sundaram

    Genetics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    sundaram@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2940-8750

Funding

National Institute of General Medical Sciences (R01GM58540)

  • Meera V Sundaram

American Cancer Society (RSG-12-149-01-DDC)

  • Alison R Frand

National Institute of General Medical Sciences (R01GM125959)

  • Meera V Sundaram

National Institute of General Medical Sciences (T32 GM008216)

  • Jennifer D Cohen

National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32 AR007465)

  • Jennifer D Cohen

Office of the Director (OD010943)

  • David H Hall

National Institute of General Medical Sciences (R35GM136315)

  • Meera V Sundaram

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Version history

  1. Received: April 15, 2020
  2. Accepted: September 21, 2020
  3. Accepted Manuscript published: September 25, 2020 (version 1)
  4. Version of Record published: October 8, 2020 (version 2)

Copyright

© 2020, Cohen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,097
    Page views
  • 237
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer D Cohen
  2. Alessandro P Sparacio
  3. Alexandra C Belfi
  4. Rachel Forman-Rubinsky
  5. David H Hall
  6. Hannah Maul-Newby
  7. Alison R Frand
  8. Meera V Sundaram
(2020)
A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans
eLife 9:e57874.
https://doi.org/10.7554/eLife.57874

Share this article

https://doi.org/10.7554/eLife.57874

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.