The architecture of EMC reveals a path for membrane protein insertion

  1. John P O'Donnell
  2. Ben Photon Phillips
  3. Yuichi Yagita
  4. Szymon Juszkiewicz
  5. Armin Wagner
  6. Duccio Malinverni
  7. Robert J Keenan
  8. Elizabeth A Miller
  9. Ramanujan S Hegde  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. Diamond Light Source, United Kingdom
  3. University of Chicago, United States

Abstract

Approximately 25% of eukaryotic genes code for integral membrane proteins that are assembled at the endoplasmic reticulum. An abundant and widely conserved multi-protein complex termed EMC has been implicated in membrane protein biogenesis, but its mechanism of action is poorly understood. Here, we define the composition and architecture of human EMC using biochemical assays, crystallography of individual subunits, site-specific photocrosslinking, and cryo-EM reconstruction. Our results suggest that EMC's cytosolic domain contains a large, moderately hydrophobic vestibule that can bind a substrate's transmembrane domain (TMD). The cytosolic vestibule leads into a lumenally-sealed, lipid-exposed intramembrane groove large enough to accommodate a single substrate TMD. A gap between the cytosolic vestibule and intramembrane groove provides a potential path for substrate egress from EMC. These findings suggest how EMC facilitates energy-independent membrane insertion of TMDs, explain why only short lumenal domains are translocated by EMC, and constrain models of EMC's proposed chaperone function.

Data availability

Structural coordinates have been deposited in PDB under accession codes 6Y4L and 6Z3W. Cryo-EM data had been deposited to EMDB under accession code EMD-11058. All other data in this study are provided within the manuscript.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. John P O'Donnell

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Ben Photon Phillips

    Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Yuichi Yagita

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Szymon Juszkiewicz

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3361-7264
  5. Armin Wagner

    Harwell Science and Innovation Campus, Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8995-7324
  6. Duccio Malinverni

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Robert J Keenan

    Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1466-0889
  8. Elizabeth A Miller

    Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    Elizabeth A Miller, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1033-8369
  9. Ramanujan S Hegde

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    rhegde@mrc-lmb.cam.ac.uk
    Competing interests
    Ramanujan S Hegde, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8338-852X

Funding

Medical Research Council (MC_UP_A022_1007)

  • Ramanujan S Hegde

Medical Research Council (MC_UP_1201/10)

  • Elizabeth A Miller

National Institutes of Health (R01 GM078186)

  • Elizabeth A Miller

National Institutes of Health (R01 GM130051)

  • Robert J Keenan

European Molecular Biology Organization (ALTF 18-2018)

  • John P O'Donnell

Boehringer Ingelheim Fonds

  • Ben Photon Phillips

Naito Foundation

  • Yuichi Yagita

Japanese Biochemical Society

  • Yuichi Yagita

Swiss National Science Foundation (P2ELP3_18910)

  • Duccio Malinverni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Received: April 15, 2020
  2. Accepted: May 26, 2020
  3. Accepted Manuscript published: May 27, 2020 (version 1)
  4. Version of Record published: June 12, 2020 (version 2)

Copyright

© 2020, O'Donnell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,601
    views
  • 827
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John P O'Donnell
  2. Ben Photon Phillips
  3. Yuichi Yagita
  4. Szymon Juszkiewicz
  5. Armin Wagner
  6. Duccio Malinverni
  7. Robert J Keenan
  8. Elizabeth A Miller
  9. Ramanujan S Hegde
(2020)
The architecture of EMC reveals a path for membrane protein insertion
eLife 9:e57887.
https://doi.org/10.7554/eLife.57887

Share this article

https://doi.org/10.7554/eLife.57887

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.