Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction
Abstract
Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here, we demonstrated that cardiac Mφs increased expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFβ1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all the figures.
Article and author information
Author details
Funding
Spanish Ministry of Science, Innovation and Universities (SAF2017-90604-REDT-NurCaMein)
- Mercedes Ricote
Spanish Ministry of Science, Innovation and Universities (RTI2018-095928-BI00)
- Mercedes Ricote
Spanish Ministry of Science, Innovation and Universities (SAF2017-83229-R)
- Alicia G Arroyo
Comunidad de Madrid (MOIR-B2017/BMD-3684)
- Alicia G Arroyo
La Marato TV3 Foundation
- David García-Dorado
- Alicia G Arroyo
- Mercedes Ricote
Fundacion La Caixa
- Laura Alonso-Herranz
- Álvaro Sahún-Español
La Residencia de Estudiantes
- Álvaro Sahún-Español
FORD-Spain and Apadrina La Ciencia
- Álvaro Sahún-Español
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal procedures were conducted in accordance with EU Directive 86/609/EEC and approved by the Animal Subjects Committee of the Instituto de Salud Carlos III (Madrid, Spain) and Madrid Community Organs in the PROEX 188/26. All surgery was performed under anesthesia with sevoflurane (5% for induction, 2%-3% for maintenance) and buprenorphine (0.01 mg/kg, Buprex, Merck & Co. Inc) was given for pain relief.
Copyright
© 2020, Alonso-Herranz et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,286
- views
-
- 540
- downloads
-
- 53
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Immunology and Inflammation
Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
-
- Immunology and Inflammation
The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.