Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction

  1. Laura Alonso-Herranz  Is a corresponding author
  2. Álvaro Sahún-Español
  3. Ana Paredes
  4. Pilar Gonzalo
  5. Polyxeni Gkontra
  6. Vanessa Núñez
  7. Cristina Clemente
  8. Marta Cedenilla
  9. María Villalba-Orero
  10. Javier Inserte
  11. David García-Dorado
  12. Alicia G Arroyo
  13. Mercedes Ricote  Is a corresponding author
  1. Centro Nacional de Investigaciones Cardiovasculares, Spain
  2. Vall d'Hebron University Hospital and Research Institute, Spain
  3. Centro de Investigaciones Biológicas (CIB-CSIC), Spain

Abstract

Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here, we demonstrated that cardiac Mφs increased expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFβ1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all the figures.

Article and author information

Author details

  1. Laura Alonso-Herranz

    Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    laura.alonso348@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0880-4735
  2. Álvaro Sahún-Español

    Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Paredes

    Pathophysiology of the Myocardium, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Pilar Gonzalo

    Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Polyxeni Gkontra

    Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Vanessa Núñez

    Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Cristina Clemente

    Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Marta Cedenilla

    Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. María Villalba-Orero

    Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Javier Inserte

    Vascular Biology and Metabolism, Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. David García-Dorado

    Vascular Biology and Metabolism, Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Alicia G Arroyo

    Matrix Metalloproteinases in Angiogenesis and Inflammationnflamación, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1536-3846
  13. Mercedes Ricote

    Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    mricote@cnic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8090-8902

Funding

Spanish Ministry of Science, Innovation and Universities (SAF2017-90604-REDT-NurCaMein)

  • Mercedes Ricote

Spanish Ministry of Science, Innovation and Universities (RTI2018-095928-BI00)

  • Mercedes Ricote

Spanish Ministry of Science, Innovation and Universities (SAF2017-83229-R)

  • Alicia G Arroyo

Comunidad de Madrid (MOIR-B2017/BMD-3684)

  • Alicia G Arroyo

La Marato TV3 Foundation

  • David García-Dorado
  • Alicia G Arroyo
  • Mercedes Ricote

Fundacion La Caixa

  • Laura Alonso-Herranz
  • Álvaro Sahún-Español

La Residencia de Estudiantes

  • Álvaro Sahún-Español

FORD-Spain and Apadrina La Ciencia

  • Álvaro Sahún-Español

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in accordance with EU Directive 86/609/EEC and approved by the Animal Subjects Committee of the Instituto de Salud Carlos III (Madrid, Spain) and Madrid Community Organs in the PROEX 188/26. All surgery was performed under anesthesia with sevoflurane (5% for induction, 2%-3% for maintenance) and buprenorphine (0.01 mg/kg, Buprex, Merck & Co. Inc) was given for pain relief.

Copyright

© 2020, Alonso-Herranz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,390
    views
  • 552
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Alonso-Herranz
  2. Álvaro Sahún-Español
  3. Ana Paredes
  4. Pilar Gonzalo
  5. Polyxeni Gkontra
  6. Vanessa Núñez
  7. Cristina Clemente
  8. Marta Cedenilla
  9. María Villalba-Orero
  10. Javier Inserte
  11. David García-Dorado
  12. Alicia G Arroyo
  13. Mercedes Ricote
(2020)
Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction
eLife 9:e57920.
https://doi.org/10.7554/eLife.57920

Share this article

https://doi.org/10.7554/eLife.57920

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.