Momentary subjective well-being depends on learning and not reward

  1. Bastien Blain  Is a corresponding author
  2. Robb B Rutledge
  1. University College London, United Kingdom

Abstract

Subjective well-being or happiness is often associated with wealth. Recent studies suggest that momentary happiness is associated with reward prediction error, the difference between experienced and predicted reward, a key component of adaptive behaviour. We tested subjects in a reinforcement learning task in which reward size and probability were uncorrelated, allowing us to dissociate between the contributions of reward and learning to happiness. Using computational modelling, we found convergent evidence across stable and volatile learning tasks that happiness, like behaviour, is sensitive to learning-relevant variables (i.e., probability prediction error). Unlike behaviour, happiness is not sensitive to learning-irrelevant variables (i.e., reward prediction error). Increasing volatility reduces how many past trials influence behaviour but not happiness. Finally, depressive symptoms reduce happiness more in volatile than stable environments. Our results suggest that how we learn about our world may be more important for how we feel than the rewards we actually receive.

Data availability

Data and code are available online (https://drive.google.com/drive/folders/1z3jYzJ7UL6Mr-eSQWq6nEWtBUunha17M?usp=sharing).

Article and author information

Author details

  1. Bastien Blain

    Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
    For correspondence
    b.blain@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7735-6043
  2. Robb B Rutledge

    Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-5039

Funding

Medical Research Council (MR/N02401X/1)

  • Robb B Rutledge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daeyeol Lee, Johns Hopkins University, United States

Ethics

Human subjects: All subjects gave informed consent and the Research Ethics Committee of University College London approved the study study (Committee approval ID Number: 12673/001).

Version history

  1. Received: April 17, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 17, 2020 (version 1)
  4. Version of Record published: December 22, 2020 (version 2)
  5. Version of Record updated: April 13, 2021 (version 3)

Copyright

© 2020, Blain & Rutledge

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,723
    views
  • 682
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bastien Blain
  2. Robb B Rutledge
(2020)
Momentary subjective well-being depends on learning and not reward
eLife 9:e57977.
https://doi.org/10.7554/eLife.57977

Share this article

https://doi.org/10.7554/eLife.57977

Further reading

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.

    1. Neuroscience
    Josue M Regalado, Ariadna Corredera Asensio ... Priyamvada Rajasethupathy
    Research Article

    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.