Long-term potentiation is independent of the C-tail of the GluA1 AMPA receptor subunit

  1. Javier Díaz-Alonso  Is a corresponding author
  2. Wade Morishita
  3. Salvatore Incontro
  4. Jeffrey Simms
  5. Julia Holtzman
  6. Michael Gill
  7. Lennart Mucke
  8. Robert C Malenka
  9. Roger A Nicoll  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Stanford University, United States
  3. Gladstone Institute of Neurological Disease, United States
  4. University of California, San Francisco, United States

Abstract

We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Javier Díaz-Alonso

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Javier.DiazAlonso@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4980-7441
  2. Wade Morishita

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Salvatore Incontro

    Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey Simms

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia Holtzman

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Gill

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lennart Mucke

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert C Malenka

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Roger A Nicoll

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    For correspondence
    roger.nicoll@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6977-4632

Funding

National Institute of Mental Health (K99MH118425)

  • Javier Díaz-Alonso

National Institute of Mental Health (R01MH070957)

  • Roger A Nicoll

National Institute of Mental Health (R01MH117139)

  • Roger A Nicoll

National Institute of Mental Health (P50MH086403)

  • Robert C Malenka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The authors declare that this study has been performed strictly following all relevant laboratory animal use regulations according to approved institutional animal care and use committee (IACUC) protocols of the University of California, San Francisco (AN170318 and AN183289), and Stanford University (10322).

Copyright

© 2020, Díaz-Alonso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,713
    views
  • 496
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javier Díaz-Alonso
  2. Wade Morishita
  3. Salvatore Incontro
  4. Jeffrey Simms
  5. Julia Holtzman
  6. Michael Gill
  7. Lennart Mucke
  8. Robert C Malenka
  9. Roger A Nicoll
(2020)
Long-term potentiation is independent of the C-tail of the GluA1 AMPA receptor subunit
eLife 9:e58042.
https://doi.org/10.7554/eLife.58042

Share this article

https://doi.org/10.7554/eLife.58042

Further reading

    1. Neuroscience
    Maxine K Loh, Samantha J Hurh ... Mitchell F Roitman
    Research Article

    Mesolimbic dopamine encoding of non-contingent rewards and reward-predictive cues has been well established. Considerable debate remains over how mesolimbic dopamine responds to aversion and in the context of aversive conditioning. Inconsistencies may arise from the use of aversive stimuli that are transduced along different neural paths relative to reward or the conflation of responses to avoidance and aversion. Here, we made intraoral infusions of sucrose and measured how dopamine and behavioral responses varied to the changing valence of sucrose. Pairing intraoral sucrose with malaise via injection of lithium chloride (LiCl) caused the development of a conditioned taste aversion (CTA), which rendered the typically rewarding taste of sucrose aversive upon subsequent re-exposure. Following CTA formation, intraoral sucrose suppressed the activity of ventral tegmental area dopamine neurons (VTADA) and nucleus accumbens (NAc) dopamine release. This pattern of dopamine signaling after CTA is similar to intraoral infusions of innately aversive quinine and contrasts with responses to sucrose when it was novel or not paired with LiCl. Dopamine responses were negatively correlated with behavioral reactivity to intraoral sucrose and predicted home cage sucrose preference. Further, dopamine responses scaled with the strength of the CTA, which was increased by repeated LiCl pairings and weakened through extinction. Thus, the findings demonstrate differential dopamine encoding of the same taste stimulus according to its valence, which is aligned to distinct behavioral responses.

    1. Neuroscience
    Gaqi Tu, Peiying Wen ... Kaori Takehara-Nishiuchi
    Research Article

    Outcomes can vary even when choices are repeated. Such ambiguity necessitates adjusting how much to learn from each outcome by tracking its variability. The medial prefrontal cortex (mPFC) has been reported to signal the expected outcome and its discrepancy from the actual outcome (prediction error), two variables essential for controlling the learning rate. However, the source of signals that shape these coding properties remains unknown. Here, we investigated the contribution of cholinergic projections from the basal forebrain because they carry precisely timed signals about outcomes. One-photon calcium imaging revealed that as mice learned different probabilities of threat occurrence on two paths, some mPFC cells responded to threats on one of the paths, while other cells gained responses to threat omission. These threat- and omission-evoked responses were scaled to the unexpectedness of outcomes, some exhibiting a reversal in response direction when encountering surprising threats as opposed to surprising omissions. This selectivity for signed prediction errors was enhanced by optogenetic stimulation of local cholinergic terminals during threats. The enhanced threat-evoked cholinergic signals also made mice erroneously abandon the correct choice after a single threat that violated expectations, thereby decoupling their path choice from the history of threat occurrence on each path. Thus, acetylcholine modulates the encoding of surprising outcomes in the mPFC to control how much they dictate future decisions.