1. Cell Biology
  2. Immunology and Inflammation
Download icon

Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity

  1. Scott B Thompson
  2. Adam M Sandor
  3. Victor Lui
  4. Jeffrey W Chung
  5. Monique M Waldman
  6. Robert A Long
  7. Miriam L Estin
  8. Jennifer L Matsuda
  9. Rachel S Friedman
  10. Jordan Jacobelli  Is a corresponding author
  1. University of Colorado School of Medicine, United States
  2. National Jewish Health, United States
Research Article
  • Cited 5
  • Views 1,261
  • Annotations
Cite this article as: eLife 2020;9:e58046 doi: 10.7554/eLife.58046

Abstract

Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.

Data availability

The data generated and analysed in this study are included in the manuscript and/or supporting files.

Article and author information

Author details

  1. Scott B Thompson

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam M Sandor

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Victor Lui

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey W Chung

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Monique M Waldman

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert A Long

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Miriam L Estin

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer L Matsuda

    Genetics Core Facility, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rachel S Friedman

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jordan Jacobelli

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    jordan.jacobelli@cuanschutz.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6612-6704

Funding

National Institute of Allergy and Infectious Diseases (R56AI105111)

  • Jordan Jacobelli

National Institute of Allergy and Infectious Diseases (R01AI125553)

  • Jordan Jacobelli

National Institute of Allergy and Infectious Diseases (R21AI119932)

  • Rachel S Friedman

JDRF (5-2013-200)

  • Rachel S Friedman
  • Jordan Jacobelli

National Institute of Allergy and Infectious Diseases (T32AI007405)

  • Scott B Thompson
  • Monique M Waldman
  • Miriam L Estin

National Multiple Sclerosis Society (PP1775)

  • Jordan Jacobelli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or other funding agencies.

Ethics

Animal experimentation: All experiments involving mice were approved by the Institutional Animal Care and Use Committees of National Jewish Health (Protocol #AS2811-01-23) and the University of Colorado School of Medicine (Protocol #000937). All efforts were made to minimize mouse suffering.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Publication history

  1. Received: April 18, 2020
  2. Accepted: June 7, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: June 22, 2020 (version 2)

Copyright

© 2020, Thompson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,261
    Page views
  • 160
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Lisa M Strong et al.
    Research Article Updated

    Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double-membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12–5–16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12–5–16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven-bladedß -propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207–230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 ß-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12–5–16 L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12–5–16 L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand and ATG8 lipidation on the other.

    1. Cell Biology
    Laura Le Pelletier et al.
    Research Article

    Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived-stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25y) or older women (>60y). Increased cell passages of young-donor ASCs (in vitro aging), resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated-protein-kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.