Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity

  1. Scott B Thompson
  2. Adam M Sandor
  3. Victor Lui
  4. Jeffrey W Chung
  5. Monique M Waldman
  6. Robert A Long
  7. Miriam L Estin
  8. Jennifer L Matsuda
  9. Rachel S Friedman
  10. Jordan Jacobelli  Is a corresponding author
  1. University of Colorado School of Medicine, United States
  2. National Jewish Health, United States

Abstract

Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.

Data availability

The data generated and analysed in this study are included in the manuscript and/or supporting files.

Article and author information

Author details

  1. Scott B Thompson

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam M Sandor

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Victor Lui

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey W Chung

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Monique M Waldman

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert A Long

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Miriam L Estin

    Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer L Matsuda

    Genetics Core Facility, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rachel S Friedman

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jordan Jacobelli

    Immunology and Microbiology / Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    jordan.jacobelli@cuanschutz.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6612-6704

Funding

National Institute of Allergy and Infectious Diseases (R56AI105111)

  • Jordan Jacobelli

National Institute of Allergy and Infectious Diseases (R01AI125553)

  • Jordan Jacobelli

National Institute of Allergy and Infectious Diseases (R21AI119932)

  • Rachel S Friedman

JDRF (5-2013-200)

  • Rachel S Friedman
  • Jordan Jacobelli

National Institute of Allergy and Infectious Diseases (T32AI007405)

  • Scott B Thompson
  • Monique M Waldman
  • Miriam L Estin

National Multiple Sclerosis Society (PP1775)

  • Jordan Jacobelli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or other funding agencies.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Ethics

Animal experimentation: All experiments involving mice were approved by the Institutional Animal Care and Use Committees of National Jewish Health (Protocol #AS2811-01-23) and the University of Colorado School of Medicine (Protocol #000937). All efforts were made to minimize mouse suffering.

Version history

  1. Received: April 18, 2020
  2. Accepted: June 7, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: June 22, 2020 (version 2)

Copyright

© 2020, Thompson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,140
    views
  • 266
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott B Thompson
  2. Adam M Sandor
  3. Victor Lui
  4. Jeffrey W Chung
  5. Monique M Waldman
  6. Robert A Long
  7. Miriam L Estin
  8. Jennifer L Matsuda
  9. Rachel S Friedman
  10. Jordan Jacobelli
(2020)
Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity
eLife 9:e58046.
https://doi.org/10.7554/eLife.58046

Share this article

https://doi.org/10.7554/eLife.58046

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.