Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity
Abstract
Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.
Data availability
The data generated and analysed in this study are included in the manuscript and/or supporting files.
Article and author information
Author details
Funding
National Institute of Allergy and Infectious Diseases (R56AI105111)
- Jordan Jacobelli
National Institute of Allergy and Infectious Diseases (R01AI125553)
- Jordan Jacobelli
National Institute of Allergy and Infectious Diseases (R21AI119932)
- Rachel S Friedman
JDRF (5-2013-200)
- Rachel S Friedman
- Jordan Jacobelli
National Institute of Allergy and Infectious Diseases (T32AI007405)
- Scott B Thompson
- Monique M Waldman
- Miriam L Estin
National Multiple Sclerosis Society (PP1775)
- Jordan Jacobelli
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or other funding agencies.
Ethics
Animal experimentation: All experiments involving mice were approved by the Institutional Animal Care and Use Committees of National Jewish Health (Protocol #AS2811-01-23) and the University of Colorado School of Medicine (Protocol #000937). All efforts were made to minimize mouse suffering.
Reviewing Editor
- Michael L Dustin, University of Oxford, United Kingdom
Publication history
- Received: April 18, 2020
- Accepted: June 7, 2020
- Accepted Manuscript published: June 8, 2020 (version 1)
- Version of Record published: June 22, 2020 (version 2)
Copyright
© 2020, Thompson et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,772
- Page views
-
- 234
- Downloads
-
- 15
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Immunology and Inflammation
The interplay among different cells in a tissue is essential for maintaining homeostasis. Although disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.
-
- Cell Biology
- Developmental Biology
Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC–MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.