Primary and promiscuous functions coexist during evolutionary innovation through whole protein domain acquisitions

  1. José Antonio Escudero
  2. Aleksandra Nivina
  3. Harry E Kemble
  4. Céline Loot
  5. Olivier Tenaillon
  6. Didier Mazel  Is a corresponding author
  1. Institut Pasteur, France
  2. INSERM, France
  3. French National Institute of Health and Medical Research, INSERM, France

Abstract

Molecular examples of evolutionary innovation are scarce and generally involve point mutations. Innovation can occur through larger rearrangements, but here experimental data is extremely limited. Integron integrases innovated from double-strand- towards single-strand-DNA recombination through the acquisition of the I2 a-helix. To investigate how this transition was possible, we have evolved integrase IntI1 to what should correspond to an early innovation state by selecting for its ancestral activity. Using synonymous alleles to enlarge sequence space exploration, we have retrieved 13 mutations affecting both I2 and the multimerization domains of IntI1. We circumvented epistasis constraints among them using a combinatorial library that revealed their individual and collective fitness effects. We obtained up to 104-fold increases in ancestral activity with various asymmetrical trade-offs in single-strand-DNA recombination. We show that high levels of primary and promiscuous functions could have initially coexisted following I2 acquisition, paving the way for a gradual evolution towards innovation.

Data availability

Sequencing data has been deposited in Dryad under accession code doi:10.5061/dryad.zcrjdfn7x

The following data sets were generated

Article and author information

Author details

  1. José Antonio Escudero

    Genomes and Genetics, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8552-2956
  2. Aleksandra Nivina

    Genomes and Genetics, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1802-3724
  3. Harry E Kemble

    IAME, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1480-5873
  4. Céline Loot

    Genomes and Genetics, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Olivier Tenaillon

    French National Institute of Health and Medical Research, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3796-1601
  6. Didier Mazel

    Genomes and Genetics, Institut Pasteur, Paris, France
    For correspondence
    mazel@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6482-6002

Funding

Centre National de la Recherche Scientifique (CNRS-UMR3525)

  • Didier Mazel

Ministerio de Ciencia, Innovacion y Universidades de Espana (BIO2017-85056-P)

  • José Antonio Escudero

Fondation pour la Recherche Médicale (FDT20150532465)

  • Aleksandra Nivina

EU-MSC Actions (PIEF-GA-2011-303022)

  • José Antonio Escudero

EU FP7 HEALTH (282004)

  • Didier Mazel

EU-FP7 FET (612146)

  • Didier Mazel

Fondation pour la Recherche Médicale (DBF20160635736)

  • Didier Mazel

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Didier Mazel

Agence Nationale de la Recherche (ANR-12- 897 BLAN-DynamINT)

  • Céline Loot

European Research Council (StG-803375)

  • José Antonio Escudero

Comunidad de Madrid (2016-T1/BIO-1105)

  • José Antonio Escudero

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul B Rainey, Max Planck Institute for Evolutionary Biology, Germany

Version history

  1. Received: April 20, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Version of Record published: January 7, 2021 (version 2)

Copyright

© 2020, Escudero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,282
    views
  • 175
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. José Antonio Escudero
  2. Aleksandra Nivina
  3. Harry E Kemble
  4. Céline Loot
  5. Olivier Tenaillon
  6. Didier Mazel
(2020)
Primary and promiscuous functions coexist during evolutionary innovation through whole protein domain acquisitions
eLife 9:e58061.
https://doi.org/10.7554/eLife.58061

Share this article

https://doi.org/10.7554/eLife.58061

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.