The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate

  1. Xingyun Qi
  2. Akira Yoshinari
  3. Pengfei Bai
  4. Michal Maes
  5. Scott M Zeng
  6. Keiko U Torii  Is a corresponding author
  1. Unversity of Washington, United States
  2. Nagoya University, Japan
  3. University of Texas at Austin, United States
  4. University of Washington, United States

Abstract

Receptor endocytosis is important for signal activation, transduction, and deactivation. However, how a receptor interprets conflicting signals to adjust cellular output is not clearly understood. Using genetic, cell biological, and pharmacological approaches, we report here that ERECTA-LIKE1 (ERL1), the major receptor restricting plant stomatal differentiation, undergoes dynamic subcellular behaviors in response to different EPIDERMAL PATTERNING FACTOR (EPF) peptides. Activation of ERL1 by EPF1 induces rapid ERL1 internalization via multivesicular bodies/late endosomes to vacuolar degradation, whereas ERL1 constitutively internalizes in the absence of EPF1. The co-receptor, TOO MANY MOUTHS is essential for ERL1 internalization induced by EPF1 but not by EPFL6. The peptide antagonist, Stomagen, triggers retention of ERL1 in the endoplasmic reticulum, likely coupled with reduced endocytosis. In contrast, the dominant-negative ERL1 remained dysfunctional in ligand-induced subcellular trafficking. Our study elucidates that multiple related yet unique peptides specify cell fate by deploying the differential subcellular dynamics of a single receptor.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source R codes are provided.

Article and author information

Author details

  1. Xingyun Qi

    Biology, Unversity of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Akira Yoshinari

    Institute of Transformative Biomolecules, Nagoya University, Nagoya, Aichi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Pengfei Bai

    Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michal Maes

    Biology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Scott M Zeng

    Physics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Keiko U Torii

    Molecular Biosciences, University of Texas at Austin, Austin, United States
    For correspondence
    ktorii@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6168-427X

Funding

Howard Hughes Medical Institute (TORII)

  • Keiko U Torii

Gordon and Betty Moore Foundation (GBMF3035)

  • Keiko U Torii

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Qi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,604
    views
  • 480
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xingyun Qi
  2. Akira Yoshinari
  3. Pengfei Bai
  4. Michal Maes
  5. Scott M Zeng
  6. Keiko U Torii
(2020)
The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate
eLife 9:e58097.
https://doi.org/10.7554/eLife.58097

Share this article

https://doi.org/10.7554/eLife.58097

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.