Topologically correct synthetic reconstruction of pathogen social behavior found during Yersinia growth in deep tissue sites

  1. Stacie A Clark
  2. Derek Thibault
  3. Lauren M Shull
  4. Kimberly M Davis
  5. Emily Aunins
  6. Tim van Opijnen  Is a corresponding author
  7. Ralph Isberg  Is a corresponding author
  1. Tufts University, United States
  2. Boston College, United States
  3. Johns Hopkins Bloomberg School of Public Health, United States

Abstract

Within deep tissue sites, extracellular bacterial pathogens often replicate in clusters that are surrounded by immune cells. Disease is modulated by interbacterial interactions as well as bacterial-host cell interactions resulting in microbial growth, phagocytic attack and secretion of host antimicrobial factors. To overcome the limited ability to manipulate these infection sites, we established a system for Yersinia pseudotuberculosis (Yptb) growth in microfluidics-driven microdroplets that regenerates microbial social behavior in tissues. Chemical generation of nitric oxide (NO) in the absence of immune cells was sufficient to reconstruct microbial social behavior, as witnessed by expression of the NO-inactivating protein Hmp on the extreme periphery of microcolonies, mimicking spatial regulation in tissues. Similarly, activated macrophages that expressed inducible NO synthase (iNOS) drove peripheral expression of Hmp, allowing regeneration of social behavior observed in tissues. These results argue that topologically correct microbial tissue growth and associated social behavior can be reconstructed in culture.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Scripts described have been deposited with GitHub and the appropriate link is provided in manuscript.

Article and author information

Author details

  1. Stacie A Clark

    Molecular Biology and Microbioloty, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Derek Thibault

    Biology, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren M Shull

    Department of Molecular Biology and Microbiology, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kimberly M Davis

    Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily Aunins

    Molecular Biology and Microbiology, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tim van Opijnen

    Biology, Boston College, Chestnut Hill, United States
    For correspondence
    vanopijn@bc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6895-6795
  7. Ralph Isberg

    Molecular Biology and Microbiology, Tufts University, Boston, United States
    For correspondence
    ralph.isberg@tufts.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8330-3554

Funding

National Institute of Allergy and Infectious Diseases (R01 AI110684)

  • Ralph Isberg

National Institute of Allergy and Infectious Diseases (R21 151593)

  • Ralph Isberg

National Institute of Allergy and Infectious Diseases (U01 AI124302)

  • Tim van Opijnen

National Institute of Allergy and Infectious Diseases (R01 AI110724)

  • Tim van Opijnen

National Institute of General Medical Sciences (T32 TM007310)

  • Stacie A Clark

National Institute of General Medical Sciences (T32 TM007310)

  • Derek Thibault

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#B2016-21 and B2019-03 ) of Tufts University. No surgeries were performed.

Copyright

© 2020, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,138
    views
  • 145
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stacie A Clark
  2. Derek Thibault
  3. Lauren M Shull
  4. Kimberly M Davis
  5. Emily Aunins
  6. Tim van Opijnen
  7. Ralph Isberg
(2020)
Topologically correct synthetic reconstruction of pathogen social behavior found during Yersinia growth in deep tissue sites
eLife 9:e58106.
https://doi.org/10.7554/eLife.58106

Share this article

https://doi.org/10.7554/eLife.58106

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Shang Geng, Xing Lv ... Tianjun Xu
    Research Article

    The incessant arms race between viruses and hosts has led to numerous evolutionary innovations that shape life’s evolution. During this process, the interactions between viral receptors and viruses have garnered significant interest since viral receptors are cell surface proteins exploited by viruses to initiate infection. Our study sheds light on the arms race between the MDA5 receptor and 5’ppp-RNA virus in a lower vertebrate fish, Miichthys miiuy. Firstly, the frequent and independent loss events of RIG-I in vertebrates prompted us to search for alternative immune substitutes, with homology-dependent genetic compensation response (HDGCR) being the main pathway. Our further analysis suggested that MDA5 of M. miiuy and Gallus gallus, the homolog of RIG-I, can replace RIG-I in recognizing 5’ppp-RNA virus, which may lead to redundancy of RIG-I and loss from the species genome during evolution. Secondly, as an adversarial strategy, 5’ppp-RNA SCRV can utilize the m6A methylation mechanism to degrade MDA5 and weaken its antiviral immune ability, thus promoting its own replication and immune evasion. In summary, our study provides a snapshot into the interaction and coevolution between vertebrate and virus, offering valuable perspectives on the ecological and evolutionary factors that contribute to the diversity of the immune system.

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Matthew C Pahl, Prabhat Sharma ... Andrew D Wells
    Research Article

    Genome-wide association studies (GWAS) have identified hundreds of genetic signals associated with autoimmune disease. The majority of these signals are located in non-coding regions and likely impact cis-regulatory elements (cRE). Because cRE function is dynamic across cell types and states, profiling the epigenetic status of cRE across physiological processes is necessary to characterize the molecular mechanisms by which autoimmune variants contribute to disease risk. We localized risk variants from 15 autoimmune GWAS to cRE active during TCR-CD28 co-stimulation of naïve human CD4+ T cells. To characterize how dynamic changes in gene expression correlate with cRE activity, we measured transcript levels, chromatin accessibility, and promoter–cRE contacts across three phases of naive CD4+ T cell activation using RNA-seq, ATAC-seq, and HiC. We identified ~1200 protein-coding genes physically connected to accessible disease-associated variants at 423 GWAS signals, at least one-third of which are dynamically regulated by activation. From these maps, we functionally validated a novel stretch of evolutionarily conserved intergenic enhancers whose activity is required for activation-induced IL2 gene expression in human and mouse, and is influenced by autoimmune-associated genetic variation. The set of genes implicated by this approach are enriched for genes controlling CD4+ T cell function and genes involved in human inborn errors of immunity, and we pharmacologically validated eight implicated genes as novel regulators of T cell activation. These studies directly show how autoimmune variants and the genes they regulate influence processes involved in CD4+ T cell proliferation and activation.