1. Immunology and Inflammation
  2. Microbiology and Infectious Disease
Download icon

Topologically correct synthetic reconstruction of pathogen social behavior found during Yersinia growth in deep tissue sites

  1. Stacie A Clark
  2. Derek Thibault
  3. Lauren M Shull
  4. Kimberly M Davis
  5. Emily Aunins
  6. Tim van Opijnen  Is a corresponding author
  7. Ralph Isberg  Is a corresponding author
  1. Tufts University, United States
  2. Boston College, United States
  3. Johns Hopkins Bloomberg School of Public Health, United States
Tools and Resources
  • Cited 0
  • Views 811
  • Annotations
Cite this article as: eLife 2020;9:e58106 doi: 10.7554/eLife.58106

Abstract

Within deep tissue sites, extracellular bacterial pathogens often replicate in clusters that are surrounded by immune cells. Disease is modulated by interbacterial interactions as well as bacterial-host cell interactions resulting in microbial growth, phagocytic attack and secretion of host antimicrobial factors. To overcome the limited ability to manipulate these infection sites, we established a system for Yersinia pseudotuberculosis (Yptb) growth in microfluidics-driven microdroplets that regenerates microbial social behavior in tissues. Chemical generation of nitric oxide (NO) in the absence of immune cells was sufficient to reconstruct microbial social behavior, as witnessed by expression of the NO-inactivating protein Hmp on the extreme periphery of microcolonies, mimicking spatial regulation in tissues. Similarly, activated macrophages that expressed inducible NO synthase (iNOS) drove peripheral expression of Hmp, allowing regeneration of social behavior observed in tissues. These results argue that topologically correct microbial tissue growth and associated social behavior can be reconstructed in culture.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Scripts described have been deposited with GitHub and the appropriate link is provided in manuscript.

Article and author information

Author details

  1. Stacie A Clark

    Molecular Biology and Microbioloty, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Derek Thibault

    Biology, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren M Shull

    Department of Molecular Biology and Microbiology, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kimberly M Davis

    Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily Aunins

    Molecular Biology and Microbiology, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tim van Opijnen

    Biology, Boston College, Chestnut Hill, United States
    For correspondence
    vanopijn@bc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6895-6795
  7. Ralph Isberg

    Molecular Biology and Microbiology, Tufts University, Boston, United States
    For correspondence
    ralph.isberg@tufts.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8330-3554

Funding

National Institute of Allergy and Infectious Diseases (R01 AI110684)

  • Ralph Isberg

National Institute of Allergy and Infectious Diseases (R21 151593)

  • Ralph Isberg

National Institute of Allergy and Infectious Diseases (U01 AI124302)

  • Tim van Opijnen

National Institute of Allergy and Infectious Diseases (R01 AI110724)

  • Tim van Opijnen

National Institute of General Medical Sciences (T32 TM007310)

  • Stacie A Clark

National Institute of General Medical Sciences (T32 TM007310)

  • Derek Thibault

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#B2016-21 and B2019-03 ) of Tufts University. No surgeries were performed.

Reviewing Editor

  1. Sophie Helaine, Imperial College London, United Kingdom

Publication history

  1. Received: April 21, 2020
  2. Accepted: June 9, 2020
  3. Accepted Manuscript published: June 16, 2020 (version 1)
  4. Version of Record published: June 25, 2020 (version 2)

Copyright

© 2020, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 811
    Page views
  • 104
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Shannon M Walsh et al.
    Tools and Resources Updated

    The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a ‘molecular tracking device’ to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.

    1. Developmental Biology
    2. Immunology and Inflammation
    Lydia K Lutes et al.
    Research Article Updated

    Functional tuning of T cells based on their degree of self-reactivity is established during positive selection in the thymus, although how positive selection differs for thymocytes with relatively low versus high self-reactivity is unclear. In addition, preselection thymocytes are highly sensitive to low-affinity ligands, but the mechanism underlying their enhanced T cell receptor (TCR) sensitivity is not fully understood. Here we show that murine thymocytes with low self-reactivity experience briefer TCR signals and complete positive selection more slowly than those with high self-reactivity. Additionally, we provide evidence that cells with low self-reactivity retain a preselection gene expression signature as they mature, including genes previously implicated in modulating TCR sensitivity and a novel group of ion channel genes. Our results imply that thymocytes with low self-reactivity downregulate TCR sensitivity more slowly during positive selection, and associate membrane ion channel expression with thymocyte self-reactivity and progress through positive selection.